搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究

李刘合 刘红涛 罗辑 许亿

带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究

李刘合, 刘红涛, 罗辑, 许亿
PDF
导出引用
导出核心图
  • 采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.
      通信作者: 李刘合, liliuhe@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275020)和国家科技重大专项(批准号: 2014zx04012012)资助的课题.
    [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1355
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-12-24
  • 刊出日期:  2016-03-05

带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究

  • 1. 北京航空航天大学机械工程及自动化学院材料加工与控制系, 北京 100191
  • 通信作者: 李刘合, liliuhe@buaa.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11275020)和国家科技重大专项(批准号: 2014zx04012012)资助的课题.

摘要: 采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回