Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and growth mechanism of high length-diameter ratio strip-shape diamond by HPHT

Hu Mei-Hua Ma Hong-An Yan Bing-Min Zhang Zhuang-Fei Li Yong Zhou Zhen-Xiang Qin Jie-Ming Jia Xiao-Peng

Synthesis and growth mechanism of high length-diameter ratio strip-shape diamond by HPHT

Hu Mei-Hua, Ma Hong-An, Yan Bing-Min, Zhang Zhuang-Fei, Li Yong, Zhou Zhen-Xiang, Qin Jie-Ming, Jia Xiao-Peng
PDF
Get Citation
  • To extend the kind of diamond and solve the low life of diamond tools because of the insufficiency of holding force, the strip-shape diamond with more than 2.5 in length-diameter ratio and 0.81.0 mm in length is synthesized by optimizing FeNi based catalyst composition and using the technology in the China-type cubic anvil high pressure apparatus. Because of the unique morphology, the threshing phenomenon appearing in the using of diamond tools is controlled effectively. Furthermore, we find that the growth rate of strip-shape diamond is much faster than that of the conventional diamond. Strip-shape diamond morphology and catalyst composition around the growing diamond crystal are characterized by SEM and EDS. The results indicate that the facets of diamond crystal are elongated along {100} and {111} faces and catalyst compositions around the growing diamond crystal become segregated. On this basis, we illustrate the growth mechanism of strip-shape diamond.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50572032, 50731006, 50801030), and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2010MS0105).
    [1]

    Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov S M 2004 Nature 428 542

    [2]

    Koizumi S,Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [3]

    Wang J T, Chen C F, Kawazoe Y 2011 Phys. Rev. B 84 012102

    [4]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Melbourn C M, Welch D L 1999 Diamond Relat. Mater. 8 1433

    [5]

    Luo X G, Liu Z Y, Xu B, Yu D L, Tian Y J, Wang H T, He J L 2010 J. Phys. Chem. C 114 17851

    [6]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [7]

    Han Q G, Ma H A, Xiao H Y, Li R, Zhang C, Li Z C, Tian Y, Jia X P2010 Acta Phys. Sin. 59 1923 (in Chinese) [韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏 2010 物理学报 textbf 59 1923]

    [8]

    Hong G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101

    [9]

    Bundy F P, Strong H T, Wentorf R H 1955 Nature 176 51

    [10]

    Kanda H, Akaishi M,Yamaoka S 1994 Appl. Phys. Lett. 65 784

    [11]

    Sung C, TaiM1995/1996 High Temperature -High Pressure 27/28 523

    [12]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [13]

    Liu X B, Jia X P, Guo X K, Zhang Z F, Ma H A 2010 Cryst. Growth. Des. 10 2895

    [14]

    Zhou L, Jia X P, Ma H A, Zheng Y J, Li Y T 2008 Chin. Phys. B 17 4665

    [15]

    Lin I C, Lin C J, Tuan W H 2011 Diamond Relat. Mater. 20 42

    [16]

    Webb S W 1999 Diamond Relat. Mater. 8 2043

    [17]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys: Condens. Matter. 14 11269

  • [1]

    Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov S M 2004 Nature 428 542

    [2]

    Koizumi S,Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [3]

    Wang J T, Chen C F, Kawazoe Y 2011 Phys. Rev. B 84 012102

    [4]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Melbourn C M, Welch D L 1999 Diamond Relat. Mater. 8 1433

    [5]

    Luo X G, Liu Z Y, Xu B, Yu D L, Tian Y J, Wang H T, He J L 2010 J. Phys. Chem. C 114 17851

    [6]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [7]

    Han Q G, Ma H A, Xiao H Y, Li R, Zhang C, Li Z C, Tian Y, Jia X P2010 Acta Phys. Sin. 59 1923 (in Chinese) [韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏 2010 物理学报 textbf 59 1923]

    [8]

    Hong G F, Jia X P, Li S S, Zhang Y F, Li Y, Zhao M, Ma H A 2010 Chin. Phys. B 19 118101

    [9]

    Bundy F P, Strong H T, Wentorf R H 1955 Nature 176 51

    [10]

    Kanda H, Akaishi M,Yamaoka S 1994 Appl. Phys. Lett. 65 784

    [11]

    Sung C, TaiM1995/1996 High Temperature -High Pressure 27/28 523

    [12]

    Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102]

    [13]

    Liu X B, Jia X P, Guo X K, Zhang Z F, Ma H A 2010 Cryst. Growth. Des. 10 2895

    [14]

    Zhou L, Jia X P, Ma H A, Zheng Y J, Li Y T 2008 Chin. Phys. B 17 4665

    [15]

    Lin I C, Lin C J, Tuan W H 2011 Diamond Relat. Mater. 20 42

    [16]

    Webb S W 1999 Diamond Relat. Mater. 8 2043

    [17]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys: Condens. Matter. 14 11269

  • Citation:
Metrics
  • Abstract views:  1681
  • PDF Downloads:  501
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2011
  • Accepted Date:  05 April 2012
  • Published Online:  05 April 2012

Synthesis and growth mechanism of high length-diameter ratio strip-shape diamond by HPHT

  • 1. State Key of Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
  • 2. Physical College, Inner Mongolia University for the Nationalities, Tongliao 028000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50572032, 50731006, 50801030), and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2010MS0105).

Abstract: To extend the kind of diamond and solve the low life of diamond tools because of the insufficiency of holding force, the strip-shape diamond with more than 2.5 in length-diameter ratio and 0.81.0 mm in length is synthesized by optimizing FeNi based catalyst composition and using the technology in the China-type cubic anvil high pressure apparatus. Because of the unique morphology, the threshing phenomenon appearing in the using of diamond tools is controlled effectively. Furthermore, we find that the growth rate of strip-shape diamond is much faster than that of the conventional diamond. Strip-shape diamond morphology and catalyst composition around the growing diamond crystal are characterized by SEM and EDS. The results indicate that the facets of diamond crystal are elongated along {100} and {111} faces and catalyst compositions around the growing diamond crystal become segregated. On this basis, we illustrate the growth mechanism of strip-shape diamond.

Reference (17)

Catalog

    /

    返回文章
    返回