Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method

Zou Zhi-Yu Liu Xiao-Fang Zeng Min Yang Bai Yu Rong-Hai Jiang He Tang Rui-He Wu Zhang-Ben

Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method

Zou Zhi-Yu, Liu Xiao-Fang, Zeng Min, Yang Bai, Yu Rong-Hai, Jiang He, Tang Rui-He, Wu Zhang-Ben
PDF
Get Citation
  • Noble metal nanoparticles have potential applications in photonics, catalysis, and bio-labeling, owing to their much unique optical properties and surface activities. Monodisperse spherical Au nanoparticles with sizes in a range of about 60-80 nm are formed on the glass surfaces via ion sputtering and follow-up heat treatment. At an appropriate temperature, the electric field assisted dissolution process of Au nanoparticles is realized by the strong direct current electric field in step-like feature. In the different color areas of glass surface, it can be found that the original spherical Au nanoparticles are dissolved into the particles with the shape of a lunar eclipse. From surface plasmon resonance absorption properties and scattering electron microscopy images of Au nanoparticles in the different color areas, the influence of experimental condition on property of gold nanoparticle is demonstrated. From the current-voltage characteristics in electric field assisted dissolution experimental process, the physical process of Au nanoparticle dissolution under strong direct current electric field is analysed: the tunneling process of ejected electrons from Au particles to the anode starts, then followed by transfer process of Au cations to the glass matrix and the combination process of electrons from cathode with a positive charge Au particles. The physical mechanism of morphology control of Au nanoparticles realized by electric field assisted dissolution method is discussed in detail.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB934602), the National Natural Science Foundation of China (Grant Nos. 51171007, 51102006), and the Fundamental Research Funds for the Central Universities of China (Grant No. YWF12LKGY004).
    [1]

    Engheta N 2007 Science 317 1698

    [2]

    Qu S L, Zhao C J, Gao Y C, Song Y L, Liu S T, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 139 (in Chinese) [曲士良, 赵崇军, 高亚臣, 宋瑛林, 刘树田, 邱建荣, 朱从善 2005 物理学报 54 139]

    [3]

    Yuan H, Ma W H, Chen C C, Zhao J C, Liu J W, Zhu H Y, Gao X P 2007 Chem. Mater. 19 1592

    [4]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys. Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱士雄 2007 物理学报 56 4024]

    [5]

    Shang C, Liu Z P 2011 J. Am. Chem. Soc. 133 9938

    [6]

    Nguyen D T, Kim D J, Kim K S 2011 Micron 42 207

    [7]

    Schmitt-Rink S, Miller D A B, Chemla D S 1987 Phys. Rev. B 35 8113

    [8]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [9]

    Depairs O, Kazansky P G, Abdolvand A, Podipensky A, Seifert G, Graener H 2004 Appl. Phys. Lett. 85 872

    [10]

    Podipensky A, Abdolvand A, Seifert G, Depairs O, Kazansky P G 2004 J. Phys. Chem. B 108 17699

    [11]

    Deparis O, Kazansky P G, Podlipensky A, Abdolvand A, Selfert G 2006 J. Appl. Phys. 100 044318

    [12]

    Janicki V, Sancho-Parramon J, Peiró F, Arbiol J 2010 Appl. Phys. B 98 93

    [13]

    Lipovskii A A, Melehin V G, Petrikov V D 2006 Tech. Phys. Lett. 32 275

    [14]

    Baresna M, Kazansky P G, Deparis O, Carvalho I C S, Takahashi S, Zayats A 2010 Adv. Mater. 22 4368

    [15]

    Zou Z Y, Chen X J, Wang Q, Qu S L, Wang X Y 2008 J. Appl. Phys. 104 113113

    [16]

    Abdolvand A, Podipensky A, Matthias S, Syrowatka F, Gösele U, Seifert G, Graener H 2005 Adv. Mater. 17 2983

    [17]

    Lipovskii A A, Kuittinen M, Karvinen P, Leinonen K, Melehin V G, Zhurikhina V V, Svirko Y P 2008 Nanotechnology 19 415304

    [18]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410

    [19]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [20]

    Sheng P 1980 Phys. Rev. Lett. 45 60

    [21]

    Raffi M, Akhter J I, Hasan M M 2006 Chem. Phys. 99 405

    [22]

    Plech A, Cerna R, Kotaidis V, Hudert F, Bartels A, Dekorsy T 2007 Nano Lett. 7 1026

    [23]

    Oonishi T, Sato S, Yao H, Kimura K 2007 J. Appl. Phys. 101 114314

    [24]

    Sancho-Parramon J, Abdolvand A, Podipensky A, Seifert G, Graener H, Syrowatka F 2006 Appl. Opt. 45 8874

    [25]

    Snow A W, Wohltjen H 1998 Chem. Mater. 10 947

  • [1]

    Engheta N 2007 Science 317 1698

    [2]

    Qu S L, Zhao C J, Gao Y C, Song Y L, Liu S T, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 139 (in Chinese) [曲士良, 赵崇军, 高亚臣, 宋瑛林, 刘树田, 邱建荣, 朱从善 2005 物理学报 54 139]

    [3]

    Yuan H, Ma W H, Chen C C, Zhao J C, Liu J W, Zhu H Y, Gao X P 2007 Chem. Mater. 19 1592

    [4]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys. Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱士雄 2007 物理学报 56 4024]

    [5]

    Shang C, Liu Z P 2011 J. Am. Chem. Soc. 133 9938

    [6]

    Nguyen D T, Kim D J, Kim K S 2011 Micron 42 207

    [7]

    Schmitt-Rink S, Miller D A B, Chemla D S 1987 Phys. Rev. B 35 8113

    [8]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [9]

    Depairs O, Kazansky P G, Abdolvand A, Podipensky A, Seifert G, Graener H 2004 Appl. Phys. Lett. 85 872

    [10]

    Podipensky A, Abdolvand A, Seifert G, Depairs O, Kazansky P G 2004 J. Phys. Chem. B 108 17699

    [11]

    Deparis O, Kazansky P G, Podlipensky A, Abdolvand A, Selfert G 2006 J. Appl. Phys. 100 044318

    [12]

    Janicki V, Sancho-Parramon J, Peiró F, Arbiol J 2010 Appl. Phys. B 98 93

    [13]

    Lipovskii A A, Melehin V G, Petrikov V D 2006 Tech. Phys. Lett. 32 275

    [14]

    Baresna M, Kazansky P G, Deparis O, Carvalho I C S, Takahashi S, Zayats A 2010 Adv. Mater. 22 4368

    [15]

    Zou Z Y, Chen X J, Wang Q, Qu S L, Wang X Y 2008 J. Appl. Phys. 104 113113

    [16]

    Abdolvand A, Podipensky A, Matthias S, Syrowatka F, Gösele U, Seifert G, Graener H 2005 Adv. Mater. 17 2983

    [17]

    Lipovskii A A, Kuittinen M, Karvinen P, Leinonen K, Melehin V G, Zhurikhina V V, Svirko Y P 2008 Nanotechnology 19 415304

    [18]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410

    [19]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [20]

    Sheng P 1980 Phys. Rev. Lett. 45 60

    [21]

    Raffi M, Akhter J I, Hasan M M 2006 Chem. Phys. 99 405

    [22]

    Plech A, Cerna R, Kotaidis V, Hudert F, Bartels A, Dekorsy T 2007 Nano Lett. 7 1026

    [23]

    Oonishi T, Sato S, Yao H, Kimura K 2007 J. Appl. Phys. 101 114314

    [24]

    Sancho-Parramon J, Abdolvand A, Podipensky A, Seifert G, Graener H, Syrowatka F 2006 Appl. Opt. 45 8874

    [25]

    Snow A W, Wohltjen H 1998 Chem. Mater. 10 947

  • [1] HOU SHI-MIN, TAO CHENG-GANG, LIU HONG-WEN, ZHAO XING-YU, LIU WEI-MIN, XUE ZENG-QUAN. STUDY ON GOLD NANOCLUSTERS AND GOLD NANOWIRES ON THE SURFACE OF HIGHLY ORIENTED PYROLYTIC GRAPHITE. Acta Physica Sinica, 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
    [2] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [3] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [4] Tang Xiao-Dong, Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [5] Zhang Yuan, Wang Lu-Xia. Theoretical study of inelastic current in molecularnano-junction excited by infrared field. Acta Physica Sinica, 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [6] Qiu Dong-Jiang, Fan Wen-Zhi, Weng Sheng, Wu Hui-Zhen, Wang Jun. Surface-plasmon-mediated emission enhancement from Ag-capped ZnO thin films. Acta Physica Sinica, 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [7] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [8] Yan Hong-Dan, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. High-density array of Au nanowires coupled by plasmon modes. Acta Physica Sinica, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [9] Qian Shi-Xiong, Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Gu Yu-Zong, Guo Li-Jun, Ma Guo-Hong. The optical and nonlinear optical properties of Au:TiO2 and Au:Al2O3 composite films. Acta Physica Sinica, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [10] Li Rao, Zhu Ya-Bin, Di Yue, Liu Dong-Xue, Li Bing, Zhong Wei. Fabrication of ordered Au nanoparticles array and its optical absorption properties. Acta Physica Sinica, 2013, 62(19): 198101. doi: 10.7498/aps.62.198101
    [11] QU SHI-LIANG, SONG YING-LIN, WANG YU-XIAO, LIU SHU-TIAN, GAO YA-CHEN, DU CHI-MIN, LI YU-LIANG, ZHU DAO-BEN. OPTICAL NONLINEARITIES IN TWO NOVEL NANOCOMPOSITES BASED ON FULLERENE C60 STRUCTURED SYSTEM WITH GOLD NANOPARTICLES. Acta Physica Sinica, 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
    [12] Yang Yan-Nan, Wang Xin-Qiang, Lu Li-Wu, Huang Cheng-Cheng, Xu Fu-Jun, Shen Bo. Surface states of InAlN film grown by MOCVD. Acta Physica Sinica, 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [13] Li Jin-Hua, Wang Lu-Xia. Vibrational effect on external field control of charge transmission in molecular nano-junction. Acta Physica Sinica, 2011, 60(11): 117310. doi: 10.7498/aps.60.117310
    [14] Wang Li-Shi, Xu Jian-Ping, Shi Shao-Bo, Zhang Xiao-Song, Ren Zhi-Rui, Ge Lin, Li Lan. Influence of ZnS modification on the I-V performance of ZnO nanorods:P3HT composite films. Acta Physica Sinica, 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [15] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [16] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [17] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [18] Sun Song-Song, Wang Hong-Yan. Optical properties of silver hollow square embedded disk nanostructures. Acta Physica Sinica, 2014, 63(10): 107803. doi: 10.7498/aps.63.107803
    [19] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [20] Li Si-Qi, Qi Wei-Hong. Calculation of absorption spectrum of silver-gold bimetallic nanoparticles. Acta Physica Sinica, 2014, 63(11): 117802. doi: 10.7498/aps.63.117802
  • Citation:
Metrics
  • Abstract views:  1775
  • PDF Downloads:  853
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2011
  • Accepted Date:  28 May 2012
  • Published Online:  20 May 2012

Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method

  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
  • 2. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2010CB934602), the National Natural Science Foundation of China (Grant Nos. 51171007, 51102006), and the Fundamental Research Funds for the Central Universities of China (Grant No. YWF12LKGY004).

Abstract: Noble metal nanoparticles have potential applications in photonics, catalysis, and bio-labeling, owing to their much unique optical properties and surface activities. Monodisperse spherical Au nanoparticles with sizes in a range of about 60-80 nm are formed on the glass surfaces via ion sputtering and follow-up heat treatment. At an appropriate temperature, the electric field assisted dissolution process of Au nanoparticles is realized by the strong direct current electric field in step-like feature. In the different color areas of glass surface, it can be found that the original spherical Au nanoparticles are dissolved into the particles with the shape of a lunar eclipse. From surface plasmon resonance absorption properties and scattering electron microscopy images of Au nanoparticles in the different color areas, the influence of experimental condition on property of gold nanoparticle is demonstrated. From the current-voltage characteristics in electric field assisted dissolution experimental process, the physical process of Au nanoparticle dissolution under strong direct current electric field is analysed: the tunneling process of ejected electrons from Au particles to the anode starts, then followed by transfer process of Au cations to the glass matrix and the combination process of electrons from cathode with a positive charge Au particles. The physical mechanism of morphology control of Au nanoparticles realized by electric field assisted dissolution method is discussed in detail.

Reference (25)

Catalog

    /

    返回文章
    返回