搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面等离子体耦合的高密度金纳米线阵列

闫红丹 Peter Lemmens Johannes Ahrens Martin Bröring Sven Burger Winfried Daum Gerhard Lilienkamp Sandra Korte Aidin Lak Meinhard Schilling

基于表面等离子体耦合的高密度金纳米线阵列

闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling
PDF
导出引用
导出核心图
  • 利用电化学沉积法在阳极氧化铝模板中制备了高长径比 (20—100) 金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征. 紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinal mode), 具有很强的各向异性特征. 纵向吸收峰的强度与入射光的偏振方向和入射角度有关, 随着长径比的增加纵向吸收峰位置向高能方向移动. 将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较, 认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移. 利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.
    • 基金项目: International Graduate School of Metrology (B-IGSM) and the NTH-School Contacts in Nanosystems 支持的课题.
    [1]

    Mie G 1908 Ann. Phys. 25 377

    [2]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409

    [3]

    Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [4]

    Liz-Marzan L M 2006 Langmuir 22 32

    [5]

    El-Sayed M A 2004 Acc. Chem. Res. 37 326

    [6]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578

    [7]

    Mulvaney P 1996 Langmuir 12 788

    [8]

    Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159

    [9]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [10]

    Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [11]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32

    [12]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153

    [13]

    Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499

    [14]

    Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880

    [15]

    Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134

    [16]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [17]

    Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165

    [18]

    Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905

    [19]

    Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384

    [20]

    Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204

    [21]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [22]

    Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404

    [23]

    Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [24]

    Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484

    [25]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)

    [26]

    Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073

    [27]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [28]

    Kasha M 1963 Radiat. Res. 20 55

    [29]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [30]

    Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

  • [1]

    Mie G 1908 Ann. Phys. 25 377

    [2]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409

    [3]

    Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [4]

    Liz-Marzan L M 2006 Langmuir 22 32

    [5]

    El-Sayed M A 2004 Acc. Chem. Res. 37 326

    [6]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578

    [7]

    Mulvaney P 1996 Langmuir 12 788

    [8]

    Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159

    [9]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [10]

    Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [11]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32

    [12]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153

    [13]

    Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499

    [14]

    Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880

    [15]

    Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134

    [16]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [17]

    Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165

    [18]

    Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905

    [19]

    Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384

    [20]

    Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204

    [21]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [22]

    Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404

    [23]

    Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [24]

    Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484

    [25]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)

    [26]

    Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073

    [27]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [28]

    Kasha M 1963 Radiat. Res. 20 55

    [29]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [30]

    Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

  • 引用本文:
    Citation:
计量
  • 文章访问数:  6509
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-21
  • 修回日期:  2012-06-27
  • 刊出日期:  2012-12-05

基于表面等离子体耦合的高密度金纳米线阵列

  • 1. Institute for Condensed Matter Physics, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany 38106;
  • 2. International Graduate School of Metrology, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany 38106;
  • 3. Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany 38106;
  • 4. Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany 14195;
  • 5. Institute of Energy Research and Physical Technologies, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany 38678;
  • 6. Institute of Electrical Measurement and Fundamental Electrical Engineering, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany 38106
    基金项目: 

    International Graduate School of Metrology (B-IGSM) and the NTH-School Contacts in Nanosystems 支持的课题.

摘要: 利用电化学沉积法在阳极氧化铝模板中制备了高长径比 (20—100) 金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征. 紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinal mode), 具有很强的各向异性特征. 纵向吸收峰的强度与入射光的偏振方向和入射角度有关, 随着长径比的增加纵向吸收峰位置向高能方向移动. 将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较, 认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移. 利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回