搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响

王丽师 徐建萍 石少波 张晓松 任志瑞 葛林 李岚

ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响

王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚
PDF
导出引用
导出核心图
  • 本文通过化学浴沉积法获得了直径约为50 nm, 长度约为250 nm的ZnO纳米棒阵列, 引入纳米ZnS对ZnO纳米棒进行表面修饰, 分别制备得到了具有ITO (indium tin oxides)/ZnO/Poly-(3-hexylthiophene) (P3HT)/Au和ITO/ZnO@ZnS/P3HT/Au结构的多层器件. 通过I-V曲线对比讨论了两种结构器件的开启电压, 串联电阻, 反向漏电流及整流比等参数, 认为包含ZnS修饰层器件的开启电压、串联电阻、反向漏电流明显降低, 整流比显著增强, 展现出更优异的电子传输性能. 光致发光光谱分析结果证实由于ZnS使ZnO纳米 棒的表面缺陷产生的非辐射复合被明显抑制, 弱化了电场激发下的载流子陷获, 改善了器件的导电特性.
    • 基金项目: 国家自然科学基金(批准号:60977035,10904109,60907021)和天津市自然科学基金(批准号:11JCYBJC00300)资助的课题.
    [1]

    Nguyen X S, Tay C B, Fitzgerald E A, Chua S J 2012 Small 8 1204

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5839]

    [3]

    Bahadur L, Kushwaha S 2012 Appl. Phys. A 109 655

    [4]

    Yan Y, Zhao S L, Xu Z, Gong W, Wang D W 2011 Acta Phys. Sin. 60 088803 (in Chinese) [闫悦, 赵谡玲, 徐征, 龚伟, 王大伟 2011 物理学报 60 088803]

    [5]

    Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F 2009 Nanotechnology 20 425202

    [6]

    Kathalingam A, Rhee J K 2012 Electron. Mater. 41 2162

    [7]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M. 2010 Phys. Chem. C 114 13846

    [8]

    Shi L, Xu Y, Hark S, Liu Y, Wang S, Peng L, Wong K, Li Q 2007 Nano Lett. 7 3559

    [9]

    He J H, Ke J J, Chang P H, Tsai K T, Yang P C, Chan I M 2012 Nanoscale 4 3399

    [10]

    Wang R C, Lin H Y 2009 Appl. Phys. A 95 813

    [11]

    Panigrahi S, Basak D 2011 Chem. Phys. Lett. 511 91

    [12]

    Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P 2006 Phys. Chem. B 110 22652

    [13]

    Lu M Y, Song J, Lu M P, Lee C Y, Chen L J, Wang Z L 2009 Acs Nano 3 357

    [14]

    Wang K, Chen J J, Zeng Z M, Tarr J, Zhou W L, Zhang Y, Yan Y F, Jiang C S, Pern J, Mascarenhas A 2010 Appl. Phys. Lett. 96 123105

    [15]

    Bera A, Basak D 2010 Appl. Mater. & Inter. 2 408

    [16]

    Liu Y R, Wang Z X, Yu J L, Xu H H 2009 Acta Phys. Sin. 58 8566 (in Chinese) [刘玉荣, 王智欣, 虞佳乐, 徐海红 2009 物理学报 58 8566]

    [17]

    Pingel P, Zen A, Abellón R D, Grozema F C, Siebbeles L D A, Neher D 2010 Adv. Funct. Mater. 20 2286

    [18]

    Briseno A L, Holcombe T W, Boukai A I, Garnett E C, Shelton S W, Fréchet J J, Yang P D 2009 Nano Lett. 10 334

    [19]

    McCullough R D, Ewbank P C 1998 Handbook of conducting polymers (New York: CRC PressI Llc) p225

    [20]

    Yin L Q, Peng J B 2009 Acta Phys. Sin. 58 3456 (in Chinese) [尹丽琴, 彭俊彪 2009 物理学报 58 3456]

    [21]

    Peterson R B, Field C L, Gregg B A 2004 Langmuir 20 5114

    [22]

    Nam W H, Lim Y S, Seo W S, Cho H K, Lee J Y 2011 Nano. Res. 13 5825

    [23]

    Schroder D K 2005 Semiconductor material and device characterization (Hoboken: A Wiley-Interscience Publication) 779

    [24]

    Lima S A M, Sigoli F A, Jafelicci M J, Davolos M R 2001 Int. J. Inorg. Mater. 3 749

    [25]

    Djurišić A B, Choy W C H, Roy V A L, Leung Y H, Kwong C Y, Cheah K W, Gundu R T K, Chan W K, Lui H F, Surya C 2004 Adv. Funct. Mater. 14 856

    [26]

    Tam K H, Cheung C K, Leung Y H, Djurišić A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K 2006 Phys. Chem. B 110 20865

    [27]

    Reddy N K, Ahsanulhaq Q, Kim J H, Hahn Y B 2008 Appl. Phys. Lett. 92 043127

    [28]

    Matsushima T, Murata H 2009 Appl. Phys. Lett. 95 203306

  • [1]

    Nguyen X S, Tay C B, Fitzgerald E A, Chua S J 2012 Small 8 1204

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5839]

    [3]

    Bahadur L, Kushwaha S 2012 Appl. Phys. A 109 655

    [4]

    Yan Y, Zhao S L, Xu Z, Gong W, Wang D W 2011 Acta Phys. Sin. 60 088803 (in Chinese) [闫悦, 赵谡玲, 徐征, 龚伟, 王大伟 2011 物理学报 60 088803]

    [5]

    Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F 2009 Nanotechnology 20 425202

    [6]

    Kathalingam A, Rhee J K 2012 Electron. Mater. 41 2162

    [7]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M. 2010 Phys. Chem. C 114 13846

    [8]

    Shi L, Xu Y, Hark S, Liu Y, Wang S, Peng L, Wong K, Li Q 2007 Nano Lett. 7 3559

    [9]

    He J H, Ke J J, Chang P H, Tsai K T, Yang P C, Chan I M 2012 Nanoscale 4 3399

    [10]

    Wang R C, Lin H Y 2009 Appl. Phys. A 95 813

    [11]

    Panigrahi S, Basak D 2011 Chem. Phys. Lett. 511 91

    [12]

    Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P 2006 Phys. Chem. B 110 22652

    [13]

    Lu M Y, Song J, Lu M P, Lee C Y, Chen L J, Wang Z L 2009 Acs Nano 3 357

    [14]

    Wang K, Chen J J, Zeng Z M, Tarr J, Zhou W L, Zhang Y, Yan Y F, Jiang C S, Pern J, Mascarenhas A 2010 Appl. Phys. Lett. 96 123105

    [15]

    Bera A, Basak D 2010 Appl. Mater. & Inter. 2 408

    [16]

    Liu Y R, Wang Z X, Yu J L, Xu H H 2009 Acta Phys. Sin. 58 8566 (in Chinese) [刘玉荣, 王智欣, 虞佳乐, 徐海红 2009 物理学报 58 8566]

    [17]

    Pingel P, Zen A, Abellón R D, Grozema F C, Siebbeles L D A, Neher D 2010 Adv. Funct. Mater. 20 2286

    [18]

    Briseno A L, Holcombe T W, Boukai A I, Garnett E C, Shelton S W, Fréchet J J, Yang P D 2009 Nano Lett. 10 334

    [19]

    McCullough R D, Ewbank P C 1998 Handbook of conducting polymers (New York: CRC PressI Llc) p225

    [20]

    Yin L Q, Peng J B 2009 Acta Phys. Sin. 58 3456 (in Chinese) [尹丽琴, 彭俊彪 2009 物理学报 58 3456]

    [21]

    Peterson R B, Field C L, Gregg B A 2004 Langmuir 20 5114

    [22]

    Nam W H, Lim Y S, Seo W S, Cho H K, Lee J Y 2011 Nano. Res. 13 5825

    [23]

    Schroder D K 2005 Semiconductor material and device characterization (Hoboken: A Wiley-Interscience Publication) 779

    [24]

    Lima S A M, Sigoli F A, Jafelicci M J, Davolos M R 2001 Int. J. Inorg. Mater. 3 749

    [25]

    Djurišić A B, Choy W C H, Roy V A L, Leung Y H, Kwong C Y, Cheah K W, Gundu R T K, Chan W K, Lui H F, Surya C 2004 Adv. Funct. Mater. 14 856

    [26]

    Tam K H, Cheung C K, Leung Y H, Djurišić A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K 2006 Phys. Chem. B 110 20865

    [27]

    Reddy N K, Ahsanulhaq Q, Kim J H, Hahn Y B 2008 Appl. Phys. Lett. 92 043127

    [28]

    Matsushima T, Murata H 2009 Appl. Phys. Lett. 95 203306

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1294
  • PDF下载量:  16405
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-04
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-10-05

ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响

  • 1. 天津理工大学电子信息工程学院, 天津 300384;
  • 2. 天津理工大学材料物理研究所, 天津 300384;
  • 3. 天津职业技术师范大学理学院, 天津 300222
    基金项目: 

    国家自然科学基金(批准号:60977035,10904109,60907021)和天津市自然科学基金(批准号:11JCYBJC00300)资助的课题.

摘要: 本文通过化学浴沉积法获得了直径约为50 nm, 长度约为250 nm的ZnO纳米棒阵列, 引入纳米ZnS对ZnO纳米棒进行表面修饰, 分别制备得到了具有ITO (indium tin oxides)/ZnO/Poly-(3-hexylthiophene) (P3HT)/Au和ITO/ZnO@ZnS/P3HT/Au结构的多层器件. 通过I-V曲线对比讨论了两种结构器件的开启电压, 串联电阻, 反向漏电流及整流比等参数, 认为包含ZnS修饰层器件的开启电压、串联电阻、反向漏电流明显降低, 整流比显著增强, 展现出更优异的电子传输性能. 光致发光光谱分析结果证实由于ZnS使ZnO纳米 棒的表面缺陷产生的非辐射复合被明显抑制, 弱化了电场激发下的载流子陷获, 改善了器件的导电特性.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回