Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The optical transmission and improvement of flux for the static polarization wind imaging interferometer

Zhang Xuan-Ni Zhang Chun-Min

The optical transmission and improvement of flux for the static polarization wind imaging interferometer

Zhang Xuan-Ni, Zhang Chun-Min
PDF
Get Citation
  • The static polarization wind imaging interferometer takes advantage of polarized-light beam to obtain interferogram, and beam transmission characteristic in core polarization components is a key issue. The Jones matrix is convenient and concise for analyzing the optics polarization state, and easy to obtain the relationship of key optical components in the system performance. The Jones matrix is introduced to describe the static polarization interferometer system respectively in a given case and in a general case. The variations of optical flux and interference fringe visibility are investigated as functions of polarization direction and wave plate azimuth associated with the key components, and their optimal values are ascertained. The optical flux can be improved by widening field of view and increasing the transmittance of the pyramid prism. The simulation results of the interference intensities confirm the theoretical expectations.The study provides a theoretical basis and practical guidance for the design, development and engineer of the static polarization wind imaging interferometer.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA121101, 2006AA12Z152), the State Key Program of National Natural Science Foundation of China (Grant No. 40537031), the National Natural Science Foundation of China (Grant Nos. 40875013, 40375010, 60278019), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. E03101112JC02), the Science and Technology Key Program of Shaanxi Province, China (Grant No. 2005K04-G18), the Topics of 2010 Provincial Key Laboratory of Suzhou University, China (Grant No. KJS1001), the Special Research Program of Shaanxi Education Department, China (Grant No. 09JK807), and Shannxi Province Education Department, China (Grant No. 09JK799).
    [1]

    Babcock D D 2006 Ph. D. Dissertation (Canada: York University)

    [2]

    Persky M J 1995 Rev. Sci. Instrum.66 4763

    [3]

    Hilliard R L, Shepherd G G 1966 J. Opt. Soc. Am. 56 362

    [4]

    Shepherd G G, Gault W A, Miller D W, Pasturczyk Z, Johnston S F, Kosteniuk P R, Haslett J W, Kendall D J W, Wimperis J R 1985 Appl. Opt. 24 1571

    [5]

    Zhang C M, Zhao B C, Yuan Z L, Huang W J 2009 J.Opt. A: Pure Appl. Opt. 11 085401

    [6]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [7]

    Gault W A, Sargoytchev S, Brown S 2001 Proc. SPIE 4306 266

    [8]

    Bird J C, Liang F C, Solheim B H, Shepherd G G 1995 Meas. Sci. Technol. 6 1368

    [9]

    Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese)[叶健勇, 张淳民, 赵葆常 2008 物理学报 57 67]

    [10]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [11]

    Zhang C M, Zhu L Y 2010 Acta Phys. Sin. 59 989 (in Chinese) [张淳民, 朱兰艳 2010 物理学报 59 989]

    [12]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p57 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第57页]

    [13]

    Zhang C M, Zhao B C, Xiangli B 2003 Opt. Commun. 227 221

    [14]

    Bu Z C, Zhang C M, Zhao B C, Zhu H C 2009 Acta Phys. Sin. 58 2415 (in Chinese) [步志超, 张淳民, 赵葆常, 朱化春 2009 物理学报 58 2415]

    [15]

    Zhang C M, Xiangli B, Zhao B C 2000 Proc. SPIE 4087 957

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 43 6090

    [17]

    Zhang C M, Zhao B C, Xiangli B, Li Y C 2006 OptiK 117 265

    [18]

    Thuillier G, Shepherd G G 1985 Appl. Opt. 24 1599

    [19]

    Thuillier G, Herse M 1991 Appl. Opt. 30 1210

    [20]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 物理学报 59 1625]

    [21]

    Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497

    [22]

    Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201

    [23]

    Zhang C M. Mu T K 2011 Opt. Eng. 50 049701

  • [1]

    Babcock D D 2006 Ph. D. Dissertation (Canada: York University)

    [2]

    Persky M J 1995 Rev. Sci. Instrum.66 4763

    [3]

    Hilliard R L, Shepherd G G 1966 J. Opt. Soc. Am. 56 362

    [4]

    Shepherd G G, Gault W A, Miller D W, Pasturczyk Z, Johnston S F, Kosteniuk P R, Haslett J W, Kendall D J W, Wimperis J R 1985 Appl. Opt. 24 1571

    [5]

    Zhang C M, Zhao B C, Yuan Z L, Huang W J 2009 J.Opt. A: Pure Appl. Opt. 11 085401

    [6]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [7]

    Gault W A, Sargoytchev S, Brown S 2001 Proc. SPIE 4306 266

    [8]

    Bird J C, Liang F C, Solheim B H, Shepherd G G 1995 Meas. Sci. Technol. 6 1368

    [9]

    Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese)[叶健勇, 张淳民, 赵葆常 2008 物理学报 57 67]

    [10]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [11]

    Zhang C M, Zhu L Y 2010 Acta Phys. Sin. 59 989 (in Chinese) [张淳民, 朱兰艳 2010 物理学报 59 989]

    [12]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p57 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第57页]

    [13]

    Zhang C M, Zhao B C, Xiangli B 2003 Opt. Commun. 227 221

    [14]

    Bu Z C, Zhang C M, Zhao B C, Zhu H C 2009 Acta Phys. Sin. 58 2415 (in Chinese) [步志超, 张淳民, 赵葆常, 朱化春 2009 物理学报 58 2415]

    [15]

    Zhang C M, Xiangli B, Zhao B C 2000 Proc. SPIE 4087 957

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 43 6090

    [17]

    Zhang C M, Zhao B C, Xiangli B, Li Y C 2006 OptiK 117 265

    [18]

    Thuillier G, Shepherd G G 1985 Appl. Opt. 24 1599

    [19]

    Thuillier G, Herse M 1991 Appl. Opt. 30 1210

    [20]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 物理学报 59 1625]

    [21]

    Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497

    [22]

    Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201

    [23]

    Zhang C M. Mu T K 2011 Opt. Eng. 50 049701

  • [1] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [2] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [3] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
  • Citation:
Metrics
  • Abstract views:  1490
  • PDF Downloads:  549
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2012
  • Accepted Date:  28 May 2012
  • Published Online:  20 May 2012

The optical transmission and improvement of flux for the static polarization wind imaging interferometer

  • 1. Non-equilibrium Condensed Matter and Quantum Engineering Laboratory, the Key Laboratory of Ministry of Education, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
  • 2. Institute of Physics and Electronic Engineering, Xianyang Normal University 712000, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA121101, 2006AA12Z152), the State Key Program of National Natural Science Foundation of China (Grant No. 40537031), the National Natural Science Foundation of China (Grant Nos. 40875013, 40375010, 60278019), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. E03101112JC02), the Science and Technology Key Program of Shaanxi Province, China (Grant No. 2005K04-G18), the Topics of 2010 Provincial Key Laboratory of Suzhou University, China (Grant No. KJS1001), the Special Research Program of Shaanxi Education Department, China (Grant No. 09JK807), and Shannxi Province Education Department, China (Grant No. 09JK799).

Abstract: The static polarization wind imaging interferometer takes advantage of polarized-light beam to obtain interferogram, and beam transmission characteristic in core polarization components is a key issue. The Jones matrix is convenient and concise for analyzing the optics polarization state, and easy to obtain the relationship of key optical components in the system performance. The Jones matrix is introduced to describe the static polarization interferometer system respectively in a given case and in a general case. The variations of optical flux and interference fringe visibility are investigated as functions of polarization direction and wave plate azimuth associated with the key components, and their optimal values are ascertained. The optical flux can be improved by widening field of view and increasing the transmittance of the pyramid prism. The simulation results of the interference intensities confirm the theoretical expectations.The study provides a theoretical basis and practical guidance for the design, development and engineer of the static polarization wind imaging interferometer.

Reference (23)

Catalog

    /

    返回文章
    返回