Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of direct current method of measuring thermal conductivities of thin films

Li Wei-Zhi Wang Jun

Numerical simulation of direct current method of measuring thermal conductivities of thin films

Li Wei-Zhi, Wang Jun
PDF
Get Citation
  • Thermal conductivity is one of the most important physical properties of thin films. Different from two- or three-dimensional measurement structures in most reports, in this work, one-dimensional (1D) two-end supported cantilever beam is provided. The structure of cantilever includes a metal heater (which also serves as a thermometer) and thin film(s) underneath for measurement. 1D heat flow equation is employed to obtain the expression of temperature rise distribution (T(x)) along the cantilever beam and voltage drop changes along the heater (U) when a direct current (DC) follows in the heater. To confirm the correctness of theoretical deduction, ANSYS finite element software is employed to simulate T(x) and U. Results demonstrate that the simulations are in good agreement with the theoretic calculations obtained from expressions of T(x) and U. Compared with conventional 3-times frequency (3 ) method, the DC method with 1D cantilever beam is relatively simple and accurate.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736005, 61006036).
    [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • Citation:
Metrics
  • Abstract views:  1609
  • PDF Downloads:  579
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2011
  • Accepted Date:  05 June 2012
  • Published Online:  05 June 2012

Numerical simulation of direct current method of measuring thermal conductivities of thin films

  • 1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 60736005, 61006036).

Abstract: Thermal conductivity is one of the most important physical properties of thin films. Different from two- or three-dimensional measurement structures in most reports, in this work, one-dimensional (1D) two-end supported cantilever beam is provided. The structure of cantilever includes a metal heater (which also serves as a thermometer) and thin film(s) underneath for measurement. 1D heat flow equation is employed to obtain the expression of temperature rise distribution (T(x)) along the cantilever beam and voltage drop changes along the heater (U) when a direct current (DC) follows in the heater. To confirm the correctness of theoretical deduction, ANSYS finite element software is employed to simulate T(x) and U. Results demonstrate that the simulations are in good agreement with the theoretic calculations obtained from expressions of T(x) and U. Compared with conventional 3-times frequency (3 ) method, the DC method with 1D cantilever beam is relatively simple and accurate.

Reference (21)

Catalog

    /

    返回文章
    返回