搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于织构表面的摩擦静电发电机制备及其输出性能研究

程广贵 张伟 方俊 蒋诗宇 丁建宁 Noshir S. Pesika 张忠强 郭立强 王莹

基于织构表面的摩擦静电发电机制备及其输出性能研究

程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹
PDF
导出引用
  • 摩擦电纳米发电机(TENG)是基于摩擦生电和静电感应复合原理将机械能转换为电能的一种新型能源获取方式. 本文采用模板法制备了几种不同参数的聚二甲基硅氧烷(PDMS)微圆柱结构, 并组装成TENG, 实验研究了接触区表面积、外加载荷对TENGs输出性能的影响. 结果表明, 圆形微柱阵列的存在有效提高了TENG的作用面积及电输出性能, 相同载荷下, 电输出随微柱间距离减小而增加, 在间距为15 m、载荷为5 N时, 输出的平均开路电压和短路电流分别为88 V 和15 A, 是同等条件下、微柱间距为50 m电输出的1.5倍以上; 电输出随载荷增加呈准线性增加, ANSYS软件模拟载荷作用下PDMS微圆柱织构的变形行为, 结果表明, 压力作用下, 微圆柱主要发生压缩变形, 基底的变形导致微柱与上电极之间产生侧向摩擦, 从而产生更多电荷, 提升了电输出性能.
      通信作者: 程广贵, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; 丁建宁, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51335002, 11472117)和清华大学摩擦学国家重点实验室开放基金(批准号: SKLTKF14A01)资助的课题.
    [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1] 黎威志, 王军. 直流法测试薄膜热导的数值模拟研究. 物理学报, 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [2] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [3] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [4] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [5] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [6] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [7] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
    [8] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制. 物理学报, 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [9] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步. 物理学报, 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [10] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性. 物理学报, 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [11] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步. 物理学报, 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [12] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究. 物理学报, 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [13] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
    [14] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [15] 滕启治, 谭欣, 武紫玉, 沈俊, 王海峰. 大型水轮发电机冷却方式综合评价方法的研究. 物理学报, 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [16] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [17] 杨黎晖, 葛扬, 马西奎. 永磁同步风力发电机随机分岔现象的全局分析. 物理学报, 2017, 66(19): 190501. doi: 10.7498/aps.66.190501
    [18] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [19] 杨国良, 李惠光. 直驱式永磁同步风力发电机中混沌运动的滑模变结构控制. 物理学报, 2009, 58(11): 7552-7557. doi: 10.7498/aps.58.7552
    [20] 郑刚, 邹见效, 徐红兵, 秦钢. 直驱型永磁同步风力发电机组中混沌运动的反步自适应控制. 物理学报, 2011, 60(6): 060506. doi: 10.7498/aps.60.060506
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1690
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2015-12-27
  • 刊出日期:  2016-03-05

基于织构表面的摩擦静电发电机制备及其输出性能研究

    基金项目: 

    国家自然科学基金(批准号: 51335002, 11472117)和清华大学摩擦学国家重点实验室开放基金(批准号: SKLTKF14A01)资助的课题.

摘要: 摩擦电纳米发电机(TENG)是基于摩擦生电和静电感应复合原理将机械能转换为电能的一种新型能源获取方式. 本文采用模板法制备了几种不同参数的聚二甲基硅氧烷(PDMS)微圆柱结构, 并组装成TENG, 实验研究了接触区表面积、外加载荷对TENGs输出性能的影响. 结果表明, 圆形微柱阵列的存在有效提高了TENG的作用面积及电输出性能, 相同载荷下, 电输出随微柱间距离减小而增加, 在间距为15 m、载荷为5 N时, 输出的平均开路电压和短路电流分别为88 V 和15 A, 是同等条件下、微柱间距为50 m电输出的1.5倍以上; 电输出随载荷增加呈准线性增加, ANSYS软件模拟载荷作用下PDMS微圆柱织构的变形行为, 结果表明, 压力作用下, 微圆柱主要发生压缩变形, 基底的变形导致微柱与上电极之间产生侧向摩擦, 从而产生更多电荷, 提升了电输出性能.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回