搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流法测试薄膜热导的数值模拟研究

黎威志 王军

直流法测试薄膜热导的数值模拟研究

黎威志, 王军
PDF
导出引用
导出核心图
  • 薄膜的热导率是薄膜热学性能的最重要参数之一, 相对于多数文献的二维或三维测试结构, 本文采用一维双端支撑悬臂梁结构研究了薄膜热导率的测试方法. 悬臂梁包含上层的兼做加热电阻及测温电阻的金属条和下层的待测试薄膜. 利用一维热传导方程推导并获得了在直流电流加热条件下, 悬臂梁的温升分布(T)及加热电阻两端电压增量(U) 表达式与薄膜热导率之间的关系. 采用ANSYS有限元软件仿真了不同仿真参数时的T及U, 仿真结果与温升表达式计算结果符合得很好. 与常用的3倍频率法(3) 薄膜热学性能测试方法相比, 一维悬臂梁直流法测试结构及手段较为简单且可以获得更为精确的结果.
    • 基金项目: 国家自然科学基金(批准号: 60736005, 61006036) 资助的课题.
    [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2450
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-15
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

直流法测试薄膜热导的数值模拟研究

  • 1. 电子科技大学光电信息学院, 成都 610054
    基金项目: 

    国家自然科学基金(批准号: 60736005, 61006036) 资助的课题.

摘要: 薄膜的热导率是薄膜热学性能的最重要参数之一, 相对于多数文献的二维或三维测试结构, 本文采用一维双端支撑悬臂梁结构研究了薄膜热导率的测试方法. 悬臂梁包含上层的兼做加热电阻及测温电阻的金属条和下层的待测试薄膜. 利用一维热传导方程推导并获得了在直流电流加热条件下, 悬臂梁的温升分布(T)及加热电阻两端电压增量(U) 表达式与薄膜热导率之间的关系. 采用ANSYS有限元软件仿真了不同仿真参数时的T及U, 仿真结果与温升表达式计算结果符合得很好. 与常用的3倍频率法(3) 薄膜热学性能测试方法相比, 一维悬臂梁直流法测试结构及手段较为简单且可以获得更为精确的结果.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回