搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究

吴文智 高来勖 孔德贵 高扬 冉玲苓 柴志军

基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究

吴文智, 高来勖, 孔德贵, 高扬, 冉玲苓, 柴志军
PDF
导出引用
导出核心图
  • 以飞秒激光放大器作为光源联合使用瞬态反射/透射实验技术研究了纳米Au半透明纳米薄膜中非平衡载能粒子的热传导过程. 在相同实验条件下, 发现该薄膜的瞬态透射和反射信号明显不同并且延迟时间在5.07.5 ps时瞬态透射信号的符号发生改变. 对纳米薄膜的透射和反射信号进行了对比分析, 分别使用双温模型和Crude近似进行数据模拟并拟合, 分析认为沿膜厚方向的温度梯度变化和界面热阻效应引起介电函数的变化不同, 从而引起了瞬态透射信号和反射信号的不同. 对于半透明金属纳米薄膜需要同时考虑其瞬态透射和反射影响才能得到准确的瞬态吸收结果. 随着抽运脉冲能量的增加, 可以看到上升时间约为1.0 ps, 电子-晶格弛豫时间增加.
      通信作者: 吴文智, wuwenzhi@hlju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61204007)、黑龙江省新世纪优秀人才支持计划(批准号: 1254-NCET-018)、黑龙江省青年学术骨干支持计划(批准号: 1252G047)、黑龙江省博士后启动基金(批准号: LBH-Q14139)和黑龙江大学杰出青年基金(批准号: JCL201205, QL201211) 资助的课题.
    [1]

    Zhang C W, Bi K D, Wang J L, Ni Z H, Chen Y F 2012 Sci. China Tech. Sci. 55 1044 (in Chinese) [张春伟, 毕可东, 王建立, 倪中华, 陈云飞 2012 中国科学:技术科学 55 1044]

    [2]

    SmithA N, HostetlerJ L, Norris P M 1999 Numerical Heat Transfer Part A 35 859

    [3]

    Nielsen J B, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447

    [4]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Hou X 2015 Int. J. Thermal Sci. 90 197

    [5]

    Li Q, Lao H Y, Lin J, Chen Y P, Chen X F 2011 Appl. Phys. A 105 125

    [6]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Lu Y, Bian H, Hou X 2014 Chem. Phys. Lett. 597 153

    [7]

    Chen J, Chen W K, Tang J, Rentzepis P M 2011 Proc. Nat. Acad. Sci. USA 108 18887

    [8]

    Rotenberg N, Bristow A D, Pfeiffer M, Betz M, van Driel H M 2007 Phys. Rev. B 75 155426

    [9]

    Guo L, Hodson S L, Fisher T S, Xu X F 2012 J. Heat Transfer 134 042402

    [10]

    Wang B L,Wang R, Liu R J, Lu X H, Zhao J M, Li Z Y 2013 Sci. Rep. 3 2358

    [11]

    Venkatakrishnan K, Tan B, Ngoi B K A 2002 Opt. Laser Technol. 34 199

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [13]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [14]

    Anisimov S, Kapeliovich B, Perelman T 1974 Soviet Phys. JETP 39 375

    [15]

    Elsayed-Ali H E, Norris T B, Pessot M A, MourouG A 1987 Phys. Rev. Lett. 58 1212

    [16]

    Fang R R, Wei H, Li Z H, Zhang D M 2012 Solid State Commun. 152 108

    [17]

    Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302

    [18]

    Hohlfeld J, Wellershoff S S, Gudde J, Conrad U, Jahnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [20]

    Jesus G M, Michael P H, Stephen R M 2008 Surf. Sci. 602 3125

    [21]

    Bonn M, Denzler D N, Funk S, Wolf M, Wellershoff S S, Hohlfeld J 2000 Phys. Rev. B 61 1101

    [22]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Opt. 38 3614

    [23]

    Guo L, Xu X F 2014 J. Heat Transfer 136 122401

    [24]

    Carpene E 2006 Phys. Rev. B 74 024301

    [25]

    Lioudakis E, Othonos A, Dimakis E, Iliopoulos E, Georgakilas A 2006 Appl. Phys. Lett. 88 121128

    [26]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680

    [27]

    Garduno-Mejia J, Higlett M P, Meech S R 2007 Chem. Phys. 341 276

    [28]

    Conforti M, Valle G D 2012 Phys. Rev. B 85 245423

    [29]

    Sun C K, Vallee F, Acioli L H, Ippen E P, Fujimoto J G 1994 Phys. Rev. B 50 15337

    [30]

    Sun C K, Vallee F, Acioli L, Ippen E P, Fujimoto J G 1993 Phys. Rev. B 48 12365

    [31]

    Hopkins P E, Norris P M 2007 Appl. Surf. Sci. 253 6289

    [32]

    Yang Q, Du G Q, Chen F, Wu Y M, Si J H, Hou X 2014 Chin. J. Lasers 41 502005 (in Chinese) [杨青, 杜广庆, 陈烽, 吴艳敏, 司金海, 侯洵2014 中国激光 41 502005]

  • [1]

    Zhang C W, Bi K D, Wang J L, Ni Z H, Chen Y F 2012 Sci. China Tech. Sci. 55 1044 (in Chinese) [张春伟, 毕可东, 王建立, 倪中华, 陈云飞 2012 中国科学:技术科学 55 1044]

    [2]

    SmithA N, HostetlerJ L, Norris P M 1999 Numerical Heat Transfer Part A 35 859

    [3]

    Nielsen J B, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447

    [4]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Hou X 2015 Int. J. Thermal Sci. 90 197

    [5]

    Li Q, Lao H Y, Lin J, Chen Y P, Chen X F 2011 Appl. Phys. A 105 125

    [6]

    Du G Q, Yang Q, Chen F, Ou Y, Wu Y M, Lu Y, Bian H, Hou X 2014 Chem. Phys. Lett. 597 153

    [7]

    Chen J, Chen W K, Tang J, Rentzepis P M 2011 Proc. Nat. Acad. Sci. USA 108 18887

    [8]

    Rotenberg N, Bristow A D, Pfeiffer M, Betz M, van Driel H M 2007 Phys. Rev. B 75 155426

    [9]

    Guo L, Hodson S L, Fisher T S, Xu X F 2012 J. Heat Transfer 134 042402

    [10]

    Wang B L,Wang R, Liu R J, Lu X H, Zhao J M, Li Z Y 2013 Sci. Rep. 3 2358

    [11]

    Venkatakrishnan K, Tan B, Ngoi B K A 2002 Opt. Laser Technol. 34 199

    [12]

    Wang H D, Ma W G, Zhang X, Wang W 2010 Acta Phys. Sin. 59 3856 (in Chinese) [王海东, 马维刚, 张兴, 王玮 2010 物理学报 59 3856]

    [13]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 物理学报 61 130512]

    [14]

    Anisimov S, Kapeliovich B, Perelman T 1974 Soviet Phys. JETP 39 375

    [15]

    Elsayed-Ali H E, Norris T B, Pessot M A, MourouG A 1987 Phys. Rev. Lett. 58 1212

    [16]

    Fang R R, Wei H, Li Z H, Zhang D M 2012 Solid State Commun. 152 108

    [17]

    Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302

    [18]

    Hohlfeld J, Wellershoff S S, Gudde J, Conrad U, Jahnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Hopkins P E, Kassebaum J L, Norris P M 2009 J. Appl. Phys. 105 023710

    [20]

    Jesus G M, Michael P H, Stephen R M 2008 Surf. Sci. 602 3125

    [21]

    Bonn M, Denzler D N, Funk S, Wolf M, Wellershoff S S, Hohlfeld J 2000 Phys. Rev. B 61 1101

    [22]

    Hostetler J L, Smith A N, Czajkowsky D M, Norris P M 1999 Appl. Opt. 38 3614

    [23]

    Guo L, Xu X F 2014 J. Heat Transfer 136 122401

    [24]

    Carpene E 2006 Phys. Rev. B 74 024301

    [25]

    Lioudakis E, Othonos A, Dimakis E, Iliopoulos E, Georgakilas A 2006 Appl. Phys. Lett. 88 121128

    [26]

    Schoenlein R W, Lin W Z, Fujimoto J G, Eesley G L 1987 Phys. Rev. Lett. 58 1680

    [27]

    Garduno-Mejia J, Higlett M P, Meech S R 2007 Chem. Phys. 341 276

    [28]

    Conforti M, Valle G D 2012 Phys. Rev. B 85 245423

    [29]

    Sun C K, Vallee F, Acioli L H, Ippen E P, Fujimoto J G 1994 Phys. Rev. B 50 15337

    [30]

    Sun C K, Vallee F, Acioli L, Ippen E P, Fujimoto J G 1993 Phys. Rev. B 48 12365

    [31]

    Hopkins P E, Norris P M 2007 Appl. Surf. Sci. 253 6289

    [32]

    Yang Q, Du G Q, Chen F, Wu Y M, Si J H, Hou X 2014 Chin. J. Lasers 41 502005 (in Chinese) [杨青, 杜广庆, 陈烽, 吴艳敏, 司金海, 侯洵2014 中国激光 41 502005]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1403
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2015-12-06
  • 刊出日期:  2016-02-05

基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究

  • 1. 黑龙江大学电子工程学院, 哈尔滨 150080
  • 通信作者: 吴文智, wuwenzhi@hlju.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 61204007)、黑龙江省新世纪优秀人才支持计划(批准号: 1254-NCET-018)、黑龙江省青年学术骨干支持计划(批准号: 1252G047)、黑龙江省博士后启动基金(批准号: LBH-Q14139)和黑龙江大学杰出青年基金(批准号: JCL201205, QL201211) 资助的课题.

摘要: 以飞秒激光放大器作为光源联合使用瞬态反射/透射实验技术研究了纳米Au半透明纳米薄膜中非平衡载能粒子的热传导过程. 在相同实验条件下, 发现该薄膜的瞬态透射和反射信号明显不同并且延迟时间在5.07.5 ps时瞬态透射信号的符号发生改变. 对纳米薄膜的透射和反射信号进行了对比分析, 分别使用双温模型和Crude近似进行数据模拟并拟合, 分析认为沿膜厚方向的温度梯度变化和界面热阻效应引起介电函数的变化不同, 从而引起了瞬态透射信号和反射信号的不同. 对于半透明金属纳米薄膜需要同时考虑其瞬态透射和反射影响才能得到准确的瞬态吸收结果. 随着抽运脉冲能量的增加, 可以看到上升时间约为1.0 ps, 电子-晶格弛豫时间增加.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回