Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of asymmetric energy transmission based on the nonlinear supratransmission

Tao Feng Chen Wei-Zhong Xu Wen Du Si-Dan

The study of asymmetric energy transmission based on the nonlinear supratransmission

Tao Feng, Chen Wei-Zhong, Xu Wen, Du Si-Dan
PDF
Get Citation
  • In this paper, the phenomenon of the asymmetric energy transmission is numerically investigated in the forbidden band of the electrical transmission line formed by two nonlinear segments which are identical in structure but different in inductor parameter. By considering the driving voltage at the frequency within the forbidden bands of both segments, the carrier of the asymmetric energy flux is the nonlinear wave beyond the band, instead of the linear wave in the passband, and the mechanism is closly related to the nonlinear supratransmission. To further understand this phenomenon in electrical transmission line, we also study the correlations between the energy intensity and the circuit parameters. Finally, we investigate the dependency of the voltage threshold on the driving frequency in physical experiment, and the result is qualitatively identical with that calculated by using equation.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974095, 11174145) and the Research Foundation for Young Scientists of Anhui University of Technology, China (Grant No. QZ201113).
    [1]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023

    [2]
    [3]

    Tocci M D, Bloemer M J, Scalora M, Dowling J P 1995 Appl. Phys. Lett. 66 2324

    [4]

    Song M H, Park B, Takanishi Y, Ishikawa K, Nishimura S, Toyooka T, Takezoe H 2006 Thin Solid Films 509 49

    [5]
    [6]
    [7]

    Konotop V V, Kuzmiak V 2002 Phys. Rev. B 66 235208

    [8]

    Hu B, Li B W, Zhao H 2000 Phys. Rev. E 61 3828

    [9]
    [10]
    [11]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [12]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [13]
    [14]
    [15]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [16]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [17]
    [18]

    Li B W, Lan J H, Wang L 2005 Phys. Rev. Lett. 95 104302

    [19]
    [20]

    Lan J H, Li B W 2006 Phys. Rev. B 74 214305

    [21]
    [22]
    [23]

    Lan J H, Li B W 2007 Phys. Rev. B 75 214302

    [24]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [25]
    [26]
    [27]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [28]
    [29]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [30]
    [31]

    Tao F, Chen W Z, Xu W, Pan J T, Du S D 2011 Phys. Rev. E, 83 056605

    [32]

    Tao F, Chen W Z, Xu W, Du S D 2011 Chin. Phys. B 21 014101

    [33]
    [34]
    [35]

    Koon K Tse Ve, Leon J, Marqui P, Tchofo-Dinda P 2007 Phys. Rev. E 75 066604

    [36]

    Yang H, Tang L 2008 Chin. Phys. B 17 1674

    [37]
    [38]
    [39]

    Fukushima K, Wadati M, Narahara Y 1980 J. Phys. Soc. Jpn. 49 1593

    [40]

    Marqui P, Bilbault J M, Remoissenet M 1994 Phys. Rev. E 49 828

    [41]
    [42]
    [43]

    Kuusela T 1995 Chaos, Solitons Fractals 5 2419

    [44]

    Martin F, Oriols X 2001 Appl. Phys. Lett. 78 2802

    [45]
    [46]
    [47]

    Dinkel J N, Setzer C, Rawal S, Lonnfren K E 2001 Chaos, Solitons Fractals 12 91

    [48]

    Yamgou S B, Morfu S, Marqui P 2007 Phys. Rev. E 75 036211

    [49]
    [50]
    [51]

    Yeml D, Marqui P, Bilbault J M 2003 Phys. Rev. E 68 016605

  • [1]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023

    [2]
    [3]

    Tocci M D, Bloemer M J, Scalora M, Dowling J P 1995 Appl. Phys. Lett. 66 2324

    [4]

    Song M H, Park B, Takanishi Y, Ishikawa K, Nishimura S, Toyooka T, Takezoe H 2006 Thin Solid Films 509 49

    [5]
    [6]
    [7]

    Konotop V V, Kuzmiak V 2002 Phys. Rev. B 66 235208

    [8]

    Hu B, Li B W, Zhao H 2000 Phys. Rev. E 61 3828

    [9]
    [10]
    [11]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [12]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [13]
    [14]
    [15]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [16]

    Li B W, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [17]
    [18]

    Li B W, Lan J H, Wang L 2005 Phys. Rev. Lett. 95 104302

    [19]
    [20]

    Lan J H, Li B W 2006 Phys. Rev. B 74 214305

    [21]
    [22]
    [23]

    Lan J H, Li B W 2007 Phys. Rev. B 75 214302

    [24]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [25]
    [26]
    [27]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [28]
    [29]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [30]
    [31]

    Tao F, Chen W Z, Xu W, Pan J T, Du S D 2011 Phys. Rev. E, 83 056605

    [32]

    Tao F, Chen W Z, Xu W, Du S D 2011 Chin. Phys. B 21 014101

    [33]
    [34]
    [35]

    Koon K Tse Ve, Leon J, Marqui P, Tchofo-Dinda P 2007 Phys. Rev. E 75 066604

    [36]

    Yang H, Tang L 2008 Chin. Phys. B 17 1674

    [37]
    [38]
    [39]

    Fukushima K, Wadati M, Narahara Y 1980 J. Phys. Soc. Jpn. 49 1593

    [40]

    Marqui P, Bilbault J M, Remoissenet M 1994 Phys. Rev. E 49 828

    [41]
    [42]
    [43]

    Kuusela T 1995 Chaos, Solitons Fractals 5 2419

    [44]

    Martin F, Oriols X 2001 Appl. Phys. Lett. 78 2802

    [45]
    [46]
    [47]

    Dinkel J N, Setzer C, Rawal S, Lonnfren K E 2001 Chaos, Solitons Fractals 12 91

    [48]

    Yamgou S B, Morfu S, Marqui P 2007 Phys. Rev. E 75 036211

    [49]
    [50]
    [51]

    Yeml D, Marqui P, Bilbault J M 2003 Phys. Rev. E 68 016605

  • [1] Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin. Defect induced asymmetric soliton transmission in the nonlinear circuit. Acta Physica Sinica, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [2] Wang Xue-Juan, Yuan Ping, Cen Jian-Yong, Zhang Ting-Long, Xue Si-Min, Zhao Jin-Cui, Xu He. Study on the radius and energy transmission properties of lightning discharge channel by the spectra. Acta Physica Sinica, 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [3] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [4] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
    [5] Liu Hai-Lan, Wen Shuang-Chun, Xiong Min, Dai Xiao-Yu. Formation and propagation of dark solitons in metamaterials. Acta Physica Sinica, 2007, 56(11): 6473-6479. doi: 10.7498/aps.56.6473
    [6] Qiao Hai-Long, Jia Wei-Guo, Liu Bao-Lin, Wang Xu-Dong, Menke Neimule, Yang Jun, Zhang Jun-Ping. Effect of Ramam gain on the characteristic of soliton propagation. Acta Physica Sinica, 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [7] Wu Qin-Kuan. Variational iteration solution method of soliton for a class of nonlinear disturbed Burgers equation. Acta Physica Sinica, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [8] Qiao Hai-Long, Jia Wei-Guo, Wang Xu-Dong, Liu Bao-Lin, Menke Neimule, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the characteristic of soliton transmission in birefringence optical fiber. Acta Physica Sinica, 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [9] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [10] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. The variational iteration method for the soliton solution of nonlinear generalized Landau-Ginzburg-Higgs equation. Acta Physica Sinica, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
  • Citation:
Metrics
  • Abstract views:  1595
  • PDF Downloads:  709
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2011
  • Accepted Date:  16 December 2011
  • Published Online:  05 July 2012

The study of asymmetric energy transmission based on the nonlinear supratransmission

  • 1. Institute of Acoustics,Key Laboratory of Modern Acoustics of Ministry of Education, Nanjing University, Nanjing 210093, China;
  • 2. School of Electrical Engineering m& Information, Anhui University of Technology, Ma'anshan 243000, China;
  • 3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 10974095, 11174145) and the Research Foundation for Young Scientists of Anhui University of Technology, China (Grant No. QZ201113).

Abstract: In this paper, the phenomenon of the asymmetric energy transmission is numerically investigated in the forbidden band of the electrical transmission line formed by two nonlinear segments which are identical in structure but different in inductor parameter. By considering the driving voltage at the frequency within the forbidden bands of both segments, the carrier of the asymmetric energy flux is the nonlinear wave beyond the band, instead of the linear wave in the passband, and the mechanism is closly related to the nonlinear supratransmission. To further understand this phenomenon in electrical transmission line, we also study the correlations between the energy intensity and the circuit parameters. Finally, we investigate the dependency of the voltage threshold on the driving frequency in physical experiment, and the result is qualitatively identical with that calculated by using equation.

Reference (51)

Catalog

    /

    返回文章
    返回