Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz broadband antireflection photonic device with graded refractive indices

Chen Yu-Ting-Wu Han Peng-Yu Kuo Mei-Ling Lin Shawn-Yu Zhang Xi-Cheng

Terahertz broadband antireflection photonic device with graded refractive indices

Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng
PDF
Get Citation
  • High resistivity silicon is a very common optical component in a terahertz system. However, its high relative refractive index of 3.42 causes a large impedance mismatch at the silicon-to-air interface. This severely reduces the available power in a terahertz system which motivates researchers to find a good anti-reflection solution. In the terahertz region, the lack of proper materials for broadband anti-reflection severely hinders such a research development. A photonic grating with graded refractive indices is demonstrated on silicon. Compared wich the case of planar silicon wafer, the transmission is observed to increase from 0.2 THz to over 7.3 THz for a device with 15 m period, which covers most of the terahertz band. With a striking relative 3 dB bandwidth of 116.3%, the device is polarization-independent and can be used under a wide incidence angle.
    • Funds: Project supported by the National Science Foundation of United States (Grant No. 0333314) and the United States Department of Energy Service (Grant No. DE-FG02-06ER46347).
    [1]

    Englert C R, Birk M, Maurer H 1999 IEEE Trans. Geosci. Remote Sens. 37 1997

    [2]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microwave Guided Wave Lett. 10 264

    [3]

    Mcknight S W, Stewart K P, Drew H D, Moorjani K 1987 Infrared Phys. 27 327

    [4]

    Kroll J, Darmo J, Unterrainer K 2007 Opt. Express 15 6552

    [5]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405

    [6]

    Dobrowolski J A 2005 Proc. SPIE 5963 596303

    [7]

    Schallenberg U B 2006 Appl. Opt. 45 1507

    [8]

    Bruckner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tunnermann A 2007 Opt. Express 15 779

    [9]

    Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Conference on Photonic Applications Systems and Technologies (San Jose: Optical Society of America) CThD7

    [10]

    Chen Y W, Han P Y, Zhang X C 2009 Appl. Phys. Lett. 94 041106

    [11]

    Huang Y, Chattopadhyay S, Jen Y, Peng C, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K, Chen L 2007 Nature Nanotech. 2 770

    [12]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635

    [13]

    Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901

    [14]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286

    [15]

    Hosako I 2005 Appl. Opt. 44 3769

    [16]

    Chen M H, Chang H, Chang A S P, Lin S, Xi J Q, Schubert E F 2007 Appl. Opt. 46 6533

    [17]

    Chen Y W, Han P Y, Zhang X C, Kuo M L, Lin S Y 2010 Opt. Lett. 35 3159

    [18]

    Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P 2008 Opt. Lett. 33 2275

    [19]

    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K 2008 Appl. Phys. Lett. 92 011131

    [20]

    Ho I C, Guo X, Zhang X C 2010 Opt. Express 18 2872

    [21]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (New Jersey: Wiley) p1138

    [22]

    Bruckner C, Kasebier T, Pradarutti B, Riehemann S, Notni G, Kley E, Tunnermann A 2009 Opt. Express 17 3063

  • [1]

    Englert C R, Birk M, Maurer H 1999 IEEE Trans. Geosci. Remote Sens. 37 1997

    [2]

    Gatesman A J, Waldman J, Ji M, Musante C, Yngvesson S 2000 IEEE Microwave Guided Wave Lett. 10 264

    [3]

    Mcknight S W, Stewart K P, Drew H D, Moorjani K 1987 Infrared Phys. 27 327

    [4]

    Kroll J, Darmo J, Unterrainer K 2007 Opt. Express 15 6552

    [5]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405

    [6]

    Dobrowolski J A 2005 Proc. SPIE 5963 596303

    [7]

    Schallenberg U B 2006 Appl. Opt. 45 1507

    [8]

    Bruckner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tunnermann A 2007 Opt. Express 15 779

    [9]

    Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Conference on Photonic Applications Systems and Technologies (San Jose: Optical Society of America) CThD7

    [10]

    Chen Y W, Han P Y, Zhang X C 2009 Appl. Phys. Lett. 94 041106

    [11]

    Huang Y, Chattopadhyay S, Jen Y, Peng C, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K, Chen L 2007 Nature Nanotech. 2 770

    [12]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635

    [13]

    Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901

    [14]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286

    [15]

    Hosako I 2005 Appl. Opt. 44 3769

    [16]

    Chen M H, Chang H, Chang A S P, Lin S, Xi J Q, Schubert E F 2007 Appl. Opt. 46 6533

    [17]

    Chen Y W, Han P Y, Zhang X C, Kuo M L, Lin S Y 2010 Opt. Lett. 35 3159

    [18]

    Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P 2008 Opt. Lett. 33 2275

    [19]

    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K 2008 Appl. Phys. Lett. 92 011131

    [20]

    Ho I C, Guo X, Zhang X C 2010 Opt. Express 18 2872

    [21]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (New Jersey: Wiley) p1138

    [22]

    Bruckner C, Kasebier T, Pradarutti B, Riehemann S, Notni G, Kley E, Tunnermann A 2009 Opt. Express 17 3063

  • Citation:
Metrics
  • Abstract views:  2271
  • PDF Downloads:  737
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2011
  • Accepted Date:  28 April 2012
  • Published Online:  20 April 2012

Terahertz broadband antireflection photonic device with graded refractive indices

  • 1. Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy 12180, USA;
  • 2. Physics Department, Rensselaer Polytechnic Institute, Troy 12180, USA
Fund Project:  Project supported by the National Science Foundation of United States (Grant No. 0333314) and the United States Department of Energy Service (Grant No. DE-FG02-06ER46347).

Abstract: High resistivity silicon is a very common optical component in a terahertz system. However, its high relative refractive index of 3.42 causes a large impedance mismatch at the silicon-to-air interface. This severely reduces the available power in a terahertz system which motivates researchers to find a good anti-reflection solution. In the terahertz region, the lack of proper materials for broadband anti-reflection severely hinders such a research development. A photonic grating with graded refractive indices is demonstrated on silicon. Compared wich the case of planar silicon wafer, the transmission is observed to increase from 0.2 THz to over 7.3 THz for a device with 15 m period, which covers most of the terahertz band. With a striking relative 3 dB bandwidth of 116.3%, the device is polarization-independent and can be used under a wide incidence angle.

Reference (22)

Catalog

    /

    返回文章
    返回