Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain effect on the intercalation potential of the layered Mn-contained lithium ion batteries cathode materials: a first principles method

Ren Xiao-Dong Liu Jian-Jun Zhang Wen-Qing

Strain effect on the intercalation potential of the layered Mn-contained lithium ion batteries cathode materials: a first principles method

Ren Xiao-Dong, Liu Jian-Jun, Zhang Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The strain effects on the intercalation potentials of LiMnO2 and Li2MnO3 are investigated by the first principles method, and the relationship between the intercalation potential and the strain is given in the form of elastic response. All the modes of strain reduce the intercalation potential and the effect is anisotropic. Most of the single modes reduce the potential by less than 0.1 V when the strains are 5%. The bonding between the host layers is rather sensitive to the strain perpendicular to the host layer when the lithium vacancy left by lithium extraction is in the lithium layer, thus that strain brings more reduction to the intercalation potential; whereas for the Li2MnO3 system when lithium is extracted form the transition metal layer, the strain along the host layer brings more reduction to the potential. For the Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) solid solution system, the strain can keep the voltage of the high potential charging stage lower than the cut-off voltage, and open up the migrating pathway of lithium in the transition metal layer, therefore the charging can last a long time and larger charging capacity is achieved.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50825205).
    [1]

    Ellis B L, Lee K T, Nazar L F 2010 Chem. Mater. 22 691

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587

    [3]

    Tarascon J M, Armand M 2001 Nature 414 359

    [4]

    Johnson C S, Li N C, Lefief C, Thackeray M M 2007 Electrochem. Commun. 9 787

    [5]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112

    [6]

    Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A 2005 J. Mater. Chem. 15 2257

    [7]

    Striebel K A, Sierra A, Shim J, Wang C W, Sastry A M 2004 J. Power Sources 134 241

    [8]

    Gnanaraj J S, Cohen Y S, Levi M D, Aurbach D 2001 J. Electroanal. Chem. 516 89

    [9]

    Meethong N, Huang H S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115

    [10]

    Chung K Y, Kim K B 2004 Electrochim. Acta 49 3327

    [11]

    Koyama Y, Chin T E, Rhyner U, Holman R K, Hall S R, Chiang Y M 2006 Adv. Funct. Mater. 16 492

    [12]

    Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354

    [13]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 2351211

    [14]

    Chevrier V L, Ong S P, Armiento R, Chan M K Y, Ceder G 2010 Phys. Rev. B 82 0751221

    [15]

    Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431

    [16]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [17]

    Wang Y J 1966 Acta Phys. Sin. 22 214 (in Chinese) [汪永江 1966 物理学报 22 214]

    [18]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A 1133

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Hua X, Chen X, Goddard W A 1997 Phys. Rev. B 55 16103

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 0351051

    [26]

    Koyama Y, Tanaka I, Nagao M, Kanno R 2009 J. Power Sources 189 798

    [27]

    Armstrong A R, Bruce P G 1996 Nature 381 499

    [28]

    Boulineau A, Croguennec L, Delmas C, Weill F 2010 Solid State Ionics 180 1652

    [29]

    Felice R A, Trivisonno J, Schuele D E 1977 Phys. Rev. B 16 5173

    [30]

    Pacalo R E, Graham E K 1991 Phys. Chem. Miner. 18 69

    [31]

    Piszora P 2007 Z. Kristallogr. 387

    [32]

    Zhang Y, Lv G H, Dong S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]

    [33]

    Wu Y, Manthiram A 2009 Solid State Ionics 180 50

    [34]

    Liu J, Reeja-Jayan B, Manthiram A 2010 J. Phys. Chem. C 114 9528

    [35]

    Johnson C S, Li N C, Lefief C, Vaughey J T, Thackeray M M 2008 Chem. Mater. 20 6095

    [36]

    Meng Y S, Arroyo-de Dompablo M E 2009 Energ. Environ. Sci. 2 589

  • [1]

    Ellis B L, Lee K T, Nazar L F 2010 Chem. Mater. 22 691

    [2]

    Goodenough J B, Kim Y 2010 Chem. Mater. 22 587

    [3]

    Tarascon J M, Armand M 2001 Nature 414 359

    [4]

    Johnson C S, Li N C, Lefief C, Thackeray M M 2007 Electrochem. Commun. 9 787

    [5]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112

    [6]

    Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A 2005 J. Mater. Chem. 15 2257

    [7]

    Striebel K A, Sierra A, Shim J, Wang C W, Sastry A M 2004 J. Power Sources 134 241

    [8]

    Gnanaraj J S, Cohen Y S, Levi M D, Aurbach D 2001 J. Electroanal. Chem. 516 89

    [9]

    Meethong N, Huang H S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115

    [10]

    Chung K Y, Kim K B 2004 Electrochim. Acta 49 3327

    [11]

    Koyama Y, Chin T E, Rhyner U, Holman R K, Hall S R, Chiang Y M 2006 Adv. Funct. Mater. 16 492

    [12]

    Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997 Phys. Rev. B 56 1354

    [13]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 2351211

    [14]

    Chevrier V L, Ong S P, Armiento R, Chan M K Y, Ceder G 2010 Phys. Rev. B 82 0751221

    [15]

    Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431

    [16]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [17]

    Wang Y J 1966 Acta Phys. Sin. 22 214 (in Chinese) [汪永江 1966 物理学报 22 214]

    [18]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A 1133

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Hua X, Chen X, Goddard W A 1997 Phys. Rev. B 55 16103

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943

    [25]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 0351051

    [26]

    Koyama Y, Tanaka I, Nagao M, Kanno R 2009 J. Power Sources 189 798

    [27]

    Armstrong A R, Bruce P G 1996 Nature 381 499

    [28]

    Boulineau A, Croguennec L, Delmas C, Weill F 2010 Solid State Ionics 180 1652

    [29]

    Felice R A, Trivisonno J, Schuele D E 1977 Phys. Rev. B 16 5173

    [30]

    Pacalo R E, Graham E K 1991 Phys. Chem. Miner. 18 69

    [31]

    Piszora P 2007 Z. Kristallogr. 387

    [32]

    Zhang Y, Lv G H, Dong S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]

    [33]

    Wu Y, Manthiram A 2009 Solid State Ionics 180 50

    [34]

    Liu J, Reeja-Jayan B, Manthiram A 2010 J. Phys. Chem. C 114 9528

    [35]

    Johnson C S, Li N C, Lefief C, Vaughey J T, Thackeray M M 2008 Chem. Mater. 20 6095

    [36]

    Meng Y S, Arroyo-de Dompablo M E 2009 Energ. Environ. Sci. 2 589

  • [1] Zhang Jia-Hong, Liu Qing-Quan, Li Min, Gu Fang, Gu Bin. Effect of size-dependent elastic constants on electrical properties of strain silicon nanowires. Acta Physica Sinica, 2010, 59(6): 4226-4234. doi: 10.7498/aps.59.4226
    [2] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [3] Liu Mario, Wang Huan-You, Cao Xiao-Ping, Jiang Yi-Min. Strain and elasticity of static granular matter. Acta Physica Sinica, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [4] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [5] Shao Dong-Yuan, Hui Qun, Li Xiao, Chen Jing-Jing, Li Chun-Mei, Cheng Nan-Pu. First-principles study on the elastic and thermal properties of Ca0.5Sr0.5TiO3. Acta Physica Sinica, 2015, 64(20): 207102. doi: 10.7498/aps.64.207102
    [6] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [7] Chen Jing-Lan, Wu Guang-Heng, Pan Fu-Sheng, You Su-Qin, Wu Liang, Ma Yong, Cui Yu-Ting. Two-step thermoelastic martensitic transformation and stress-strain characteristic of Ni53.2Mn22.6Ga24.2 single crystal. Acta Physica Sinica, 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [8] Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Effect of wire width on strain distribution and bandgap in quantum-wire nanostructures based on continuum elasticity theory. Acta Physica Sinica, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [9] Wang Yu-Zhen, Ma Ying, Zhou Yi-Chun. Molecular dynamics study of epitaxial compressive strain influence on the radiation resistance of BaTiO3 ferroelectrics. Acta Physica Sinica, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [10] Zhang Guo-Hua, Shi Li-Bin, Zheng Yan, Ren Jun-Yuan, Li Ming-Biao. Strain effect on microwave surface resistance of YBa2Cu3O7-δ/LaAlO3 and Tl2Ba2CaCu2O8/LaAlO3 high temperature superconducting thin films. Acta Physica Sinica, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [11] Zhao Jian-Tao, Zhao Kun, Wang Jia-Jia, Yu Xin-Quan, Yu Jin, Wu San-Xie. A first principles study on Mn2NiGa Heusler alloy. Acta Physica Sinica, 2012, 61(21): 213102. doi: 10.7498/aps.61.213102
    [12] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [13] Song Ren-Bo, Du Da-Wei, Liu Na-Na, Sun Han-Ying. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [14] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [15] Ma Tian-Hui, Zhuang Zhi-Ping, Ren Yu-Lan. First-principles calculations of optical and mechanical properties of LiBX2 (B= Ga, In; X= S, Se, Te). Acta Physica Sinica, 2012, 61(19): 197101. doi: 10.7498/aps.61.197101
    [16] Yang Li, Zu Xiao-Tao, Fan Kai-Min, Peng Shu-Ming, Long Xing-Gui, Wu Zhong-Cheng. First-principles calculation for elastic constantsof α-ScDx(D=H, He). Acta Physica Sinica, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [17] Gao Ju, Hu Feng-Xia, Wang Yong, Jia Quan-Jie, Zhang Hong-Di, An Yu-Kai, Mai Zhen-Hong. Thickness effect on structure and magnetic properties of La0.8Ca0.2MnO3/SrTiO3 films. Acta Physica Sinica, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [18] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [19] Liu Shao-Jun, Chen Xiang-Rong, Wang Hai-Yan, Zhu Wen-Jun, He Hong-Liang, Song Zhen-Fei. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] Huang Shi-Hao, Li Cheng, Chen Cheng-Zhao, Zheng Yuan-Yu, Lai Hong-Kai, Chen Song-Yan. The optical property of tensile-strained n-type doped Ge. Acta Physica Sinica, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
  • Citation:
Metrics
  • Abstract views:  1953
  • PDF Downloads:  636
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2012
  • Accepted Date:  07 March 2012
  • Published Online:  05 September 2012

Strain effect on the intercalation potential of the layered Mn-contained lithium ion batteries cathode materials: a first principles method

  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50825205).

Abstract: The strain effects on the intercalation potentials of LiMnO2 and Li2MnO3 are investigated by the first principles method, and the relationship between the intercalation potential and the strain is given in the form of elastic response. All the modes of strain reduce the intercalation potential and the effect is anisotropic. Most of the single modes reduce the potential by less than 0.1 V when the strains are 5%. The bonding between the host layers is rather sensitive to the strain perpendicular to the host layer when the lithium vacancy left by lithium extraction is in the lithium layer, thus that strain brings more reduction to the intercalation potential; whereas for the Li2MnO3 system when lithium is extracted form the transition metal layer, the strain along the host layer brings more reduction to the potential. For the Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) solid solution system, the strain can keep the voltage of the high potential charging stage lower than the cut-off voltage, and open up the migrating pathway of lithium in the transition metal layer, therefore the charging can last a long time and larger charging capacity is achieved.

Reference (36)

Catalog

    /

    返回文章
    返回