Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution of interference patterns of strongly interacting Fermi gases in a harmonic trap

Wen Wen Li Hui-Jun Chen Bing-Yan

Evolution of interference patterns of strongly interacting Fermi gases in a harmonic trap

Wen Wen, Li Hui-Jun, Chen Bing-Yan
PDF
Get Citation
  • We study the evolution of the interference patterns of strongly interacting Fermi gases in a harmonic trap after removal of the optical lattice, by numerically solving the superfluid order-parameter equation. We find that for the strongly interacting Fermi gas elastic collisions during the expansion blur the interference peaks. In order to obtain a nearly ballistic expansion, the fast magnetic field ramp technique is applied in experiment. We simulate the fast magnetic field ramp process before expansions of strongly interacting Fermi gases. We find that clear interference patterns are formed, and oscillate for a long time in the harmonic trap. We also calculate the interference patterns in different superfluid regimes, which accord with the experimental observations.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11105039), the fundamental Research Funds for the Central Universities of China under Grant (Grant Nos. 2012B05714, 2009B31614), and the Doctoral Foundation of Hohai University 2010.
    [1]

    Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215

    [2]

    Inouye, Andrews M R, Stenger J, Miesner H J, Stamperkurn, Ketterle W 1998 Nature 392 151

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [4]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179

    [5]

    Greiner M, Mandel O, Esslinger T, Hänsch, 2002 Nature 415 39

    [6]

    Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K, Ketterle W 2006 Nature 443 961

    [7]

    Wen W, Zhou Y, Huang G X 2008 Phys. Rev. A 77 033623

    [8]

    Liu S J, Wen W, Huang G X 2012 Int. J. Mod. Phys. B 26 1250017

    [9]

    Liu S J, Xiong H W, Xu Z J, Huang G X 2006 J. Phys. B: At. Mol. Opt. Phys. 36 2083

    [10]

    Xu Z J, Cheng C, Yang H S, Wu q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese) [徐志君, 程成, 杨欢耸, 武强, 熊宏伟 2004 物理学报 53 2835]

    [11]

    Müller J H, Morsch O, Cristiani M, Ciampini D, Arimondo E 2003 J. Opt. B: Quantum Semiclass. Opt 5 S38

    [12]

    Salasnich L, Manini N, Toigo F 2008 Phys. Rev. A 77 043609

    [13]

    Salasnich L, Toigo F 2008 Phys. Rev. A 78 053626

    [14]

    Wen W, Huang G X 2009 Phys. Rev. A 79 023605

    [15]

    Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528

    [16]

    Xue J K, Zhang A X 2008 Phys. Rev. Lett. 101 180401

    [17]

    Manini N, Salasnich L 2005 Phys. Rev. A 71 033625

    [18]

    Pieri P, Strinati G C 2003 Phys. Rev. Lett. 91 030401

    [19]

    Huang G X, Makarov V A, Velarde M G 2003 Phys. Rev. A 67 023604

    [20]

    Orel A A, Dyke P, Delehaye M, Vale C J, Hui H, 2011 New J. Phy. 13 113032

    [21]

    Adhikari S K, Muruganandam P 2003 Phys. Lett. A 310 229

    [22]

    Band Y B, Trippenbach M, Burke J P, Julienne P S 2000 Phys. Rev. Lett. 84 5462

  • [1]

    Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215

    [2]

    Inouye, Andrews M R, Stenger J, Miesner H J, Stamperkurn, Ketterle W 1998 Nature 392 151

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885

    [4]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179

    [5]

    Greiner M, Mandel O, Esslinger T, Hänsch, 2002 Nature 415 39

    [6]

    Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K, Ketterle W 2006 Nature 443 961

    [7]

    Wen W, Zhou Y, Huang G X 2008 Phys. Rev. A 77 033623

    [8]

    Liu S J, Wen W, Huang G X 2012 Int. J. Mod. Phys. B 26 1250017

    [9]

    Liu S J, Xiong H W, Xu Z J, Huang G X 2006 J. Phys. B: At. Mol. Opt. Phys. 36 2083

    [10]

    Xu Z J, Cheng C, Yang H S, Wu q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese) [徐志君, 程成, 杨欢耸, 武强, 熊宏伟 2004 物理学报 53 2835]

    [11]

    Müller J H, Morsch O, Cristiani M, Ciampini D, Arimondo E 2003 J. Opt. B: Quantum Semiclass. Opt 5 S38

    [12]

    Salasnich L, Manini N, Toigo F 2008 Phys. Rev. A 77 043609

    [13]

    Salasnich L, Toigo F 2008 Phys. Rev. A 78 053626

    [14]

    Wen W, Huang G X 2009 Phys. Rev. A 79 023605

    [15]

    Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528

    [16]

    Xue J K, Zhang A X 2008 Phys. Rev. Lett. 101 180401

    [17]

    Manini N, Salasnich L 2005 Phys. Rev. A 71 033625

    [18]

    Pieri P, Strinati G C 2003 Phys. Rev. Lett. 91 030401

    [19]

    Huang G X, Makarov V A, Velarde M G 2003 Phys. Rev. A 67 023604

    [20]

    Orel A A, Dyke P, Delehaye M, Vale C J, Hui H, 2011 New J. Phy. 13 113032

    [21]

    Adhikari S K, Muruganandam P 2003 Phys. Lett. A 310 229

    [22]

    Band Y B, Trippenbach M, Burke J P, Julienne P S 2000 Phys. Rev. Lett. 84 5462

  • [1] Yang Huan-Song, Xu Zhi-Jun, Cheng Cheng, Wu Qiang, Xiong Hong-Wei. The groud-state wave function and evolution of the interference pattern for a Bose-condensed gas in 3D optical lattices. Acta Physica Sinica, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
    [2] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [3] Yang Shu-Rong, Cai Hong-Qiang, Qi Wei, Xue Ju-Kui. Gap solitons of a superfluid fermion gas in optical lattices. Acta Physica Sinica, 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [4] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [5] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [7] Bai Xiao-Dong, Liu Rui-Han, Liu Lu, Tang Rong-An, Xue Ju-Kui. The ground state solutions of superfluid Fermi gas in optical lattices. Acta Physica Sinica, 2010, 59(11): 7581-7585. doi: 10.7498/aps.59.7581
    [8] Yu Xue-Cai, Wang Ping-He, Zhang Li-Xun. Atom movement in momentum dependent light dipole lattices. Acta Physica Sinica, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [9] Li Yan. Theory of density-density correlations between ultracold Bosons released from optical lattices. Acta Physica Sinica, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [10] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
  • Citation:
Metrics
  • Abstract views:  4035
  • PDF Downloads:  805
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2012
  • Accepted Date:  06 June 2012
  • Published Online:  20 November 2012

Evolution of interference patterns of strongly interacting Fermi gases in a harmonic trap

  • 1. Department of Mathematics and Physics, Hohai University, Changzhou Campus, Changzhou 213022, China;
  • 2. Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11105039), the fundamental Research Funds for the Central Universities of China under Grant (Grant Nos. 2012B05714, 2009B31614), and the Doctoral Foundation of Hohai University 2010.

Abstract: We study the evolution of the interference patterns of strongly interacting Fermi gases in a harmonic trap after removal of the optical lattice, by numerically solving the superfluid order-parameter equation. We find that for the strongly interacting Fermi gas elastic collisions during the expansion blur the interference peaks. In order to obtain a nearly ballistic expansion, the fast magnetic field ramp technique is applied in experiment. We simulate the fast magnetic field ramp process before expansions of strongly interacting Fermi gases. We find that clear interference patterns are formed, and oscillate for a long time in the harmonic trap. We also calculate the interference patterns in different superfluid regimes, which accord with the experimental observations.

Reference (22)

Catalog

    /

    返回文章
    返回