Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of the three-dimensional array of optical trap by spatial light modulator

Xu Shu-Wu Zhou Qiao-Qiao Gu Song-Bo Ji Xian-Ming Yin Jian-Ping

Generation of the three-dimensional array of optical trap by spatial light modulator

Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping
PDF
Get Citation
  • In this paper, a new scheme of generating a three-dimensional array of optical trap is proposed by using a composite phase grating that is fabricated by liquid crystal spatial light modulator. The composite phase grating is formed by combining the circular grating, which is generated by transforming a one-dimensional rectangular grating into a circular grating that can produce the longitudinal array of optical trap, with a two-dimensional rectangular grating. The grating that generates 5× 5× 5 array of optical trap is simulated according to the technical parameters of the spatial light modulator. The output intensity distribution is calculated by using the Gaussian light wave with ordinary power as input light and focusing the diffracting light with lens. The results show that three-dimensional array of optical trap with a very high peak value of intensity and an intensity gradient is obtained around the focus of the lens. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between the atom and the optical field is much greater than the atom gravity. When the high power laser is used as input light, the generated array of optical trap can also be employed to trap the cold molecules produced by Stark deceleration.
    • Funds: Project supported by the Key Program National Natural Science Foundation of China (Grant No. 11034002), the National Natural Science Foundation of China (Grant Nos. 10904037, 10974055), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Research Fund of State Key Laboratory of Precision Spectroscopy, East China Normal University and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008183).
    [1]

    Tie L, Xue J K 2011 Chin.Phys. B 20 120311

    [2]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [3]

    Stoferle T, Moritz H, Gunter K, Kohl M, Esslinger T 2006 Phys. Rev. Lett. 96 030401

    [4]

    Birkl G, Gatzke M, Deutsch I H, Rolston S L, Phillips W D 1995 Phys. Rev. Lett. 75 2823

    [5]

    Matthias W, Andreas H, Axel G, Tilman E, Theodor W H 1995 Phys. Rev. Lett. 75 4583

    [6]

    Tasgin M E, Mustecaplioglu Ö E, Oktel M Ö 2007 Phys. Rev. A 75 063627

    [7]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [8]

    Zaleski T A, Kopec T K 2010 J. Phys. A: Math. Theor. 43 425303

    [9]

    Wang T, Javanainen J, Yelin S F 2007 Phys. Rev. A 76 011601

    [10]

    McKay D C, DeMarco B 2011 Rep. Prog. Phys. 74 054401

    [11]

    Jiannis K P, Peter L K 2003 Phys.Rev. Lett. 91 107902

    [12]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [13]

    Kastner M. 2010 Phys. Rev. Lett. 104 240403

    [14]

    Kessler D A, Barkai E 2010 Phys. Rev. Lett. 105 120602

    [15]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [16]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410

    [17]

    Friebel S, Andrea C D, Walz J, Weitz M, Hansch T W 1998 Phys. Rev. A 57 R20

    [18]

    Scheunemann R, Cataliotti F S, Hansch T W, Weitz M 1998 Phys. Rev. A 62 051801

    [19]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [20]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [21]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta Phys. Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [22]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平2004 物理学报 53 4163]

    [23]

    Mu R W, Lu J F, Xu S U, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [24]

    Fatemi F K, Bashkansky M, Dutton Z 2007 Opt. Express 15 3589

    [25]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [26]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta Phys. Sin. 60 063701 (in Chinese) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [27]

    Qi X Q, Gao C Q 2011 Acta Phys. Sin. 60 014208 (in Chinese) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [28]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [29]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东2009 物理学报 58 3154]

    [30]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [31]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [32]

    Liu X, Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [33]

    Gu S B, Xu S W, Lu J F Ji X M, Yin J P 2012 Acta Phys. Sin. 61 153701 (in Chinese) [顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平 2012 物理学报 61 153701]

    [34]

    Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

  • [1]

    Tie L, Xue J K 2011 Chin.Phys. B 20 120311

    [2]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [3]

    Stoferle T, Moritz H, Gunter K, Kohl M, Esslinger T 2006 Phys. Rev. Lett. 96 030401

    [4]

    Birkl G, Gatzke M, Deutsch I H, Rolston S L, Phillips W D 1995 Phys. Rev. Lett. 75 2823

    [5]

    Matthias W, Andreas H, Axel G, Tilman E, Theodor W H 1995 Phys. Rev. Lett. 75 4583

    [6]

    Tasgin M E, Mustecaplioglu Ö E, Oktel M Ö 2007 Phys. Rev. A 75 063627

    [7]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [8]

    Zaleski T A, Kopec T K 2010 J. Phys. A: Math. Theor. 43 425303

    [9]

    Wang T, Javanainen J, Yelin S F 2007 Phys. Rev. A 76 011601

    [10]

    McKay D C, DeMarco B 2011 Rep. Prog. Phys. 74 054401

    [11]

    Jiannis K P, Peter L K 2003 Phys.Rev. Lett. 91 107902

    [12]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [13]

    Kastner M. 2010 Phys. Rev. Lett. 104 240403

    [14]

    Kessler D A, Barkai E 2010 Phys. Rev. Lett. 105 120602

    [15]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [16]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410

    [17]

    Friebel S, Andrea C D, Walz J, Weitz M, Hansch T W 1998 Phys. Rev. A 57 R20

    [18]

    Scheunemann R, Cataliotti F S, Hansch T W, Weitz M 1998 Phys. Rev. A 62 051801

    [19]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [20]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [21]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta Phys. Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [22]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平2004 物理学报 53 4163]

    [23]

    Mu R W, Lu J F, Xu S U, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [24]

    Fatemi F K, Bashkansky M, Dutton Z 2007 Opt. Express 15 3589

    [25]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [26]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta Phys. Sin. 60 063701 (in Chinese) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [27]

    Qi X Q, Gao C Q 2011 Acta Phys. Sin. 60 014208 (in Chinese) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [28]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [29]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东2009 物理学报 58 3154]

    [30]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [31]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [32]

    Liu X, Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [33]

    Gu S B, Xu S W, Lu J F Ji X M, Yin J P 2012 Acta Phys. Sin. 61 153701 (in Chinese) [顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平 2012 物理学报 61 153701]

    [34]

    Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

  • [1] Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Generation of the array of optical traps by liquid crystal spatial light modulator. Acta Physica Sinica, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [2] Yin Jian-Ping, Lu Jun-Fa, Ji Xian-Ming, Mu Ren-Wang. Array of micro-optical traps for cold atoms or cold molecules using a Damman grating. Acta Physica Sinica, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [3] Zhou Qiao-Qiao, Xu Shu-Wu, Lu Jun-Fa, Zhou Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator. Acta Physica Sinica, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [4] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of arbitrary vector beam based on optical holography. Acta Physica Sinica, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [5] Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia. Single-shot incoherent digital holography based on spatial light modulator. Acta Physica Sinica, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [7] Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng. Free-space optical communication based on hybrid optical mode array encoding. Acta Physica Sinica, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [8] Yin Jian-Ping, Lu Jun-Fa, Ji Xian-Ming. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [9] Yin Jian-Ping, Ji Xian-Ming. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [10] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
  • Citation:
Metrics
  • Abstract views:  3704
  • PDF Downloads:  580
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2012
  • Accepted Date:  12 June 2012
  • Published Online:  20 November 2012

Generation of the three-dimensional array of optical trap by spatial light modulator

  • 1. Science College, Nantong University, Nantong 226007, China;
  • 2. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Fund Project:  Project supported by the Key Program National Natural Science Foundation of China (Grant No. 11034002), the National Natural Science Foundation of China (Grant Nos. 10904037, 10974055), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Research Fund of State Key Laboratory of Precision Spectroscopy, East China Normal University and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008183).

Abstract: In this paper, a new scheme of generating a three-dimensional array of optical trap is proposed by using a composite phase grating that is fabricated by liquid crystal spatial light modulator. The composite phase grating is formed by combining the circular grating, which is generated by transforming a one-dimensional rectangular grating into a circular grating that can produce the longitudinal array of optical trap, with a two-dimensional rectangular grating. The grating that generates 5× 5× 5 array of optical trap is simulated according to the technical parameters of the spatial light modulator. The output intensity distribution is calculated by using the Gaussian light wave with ordinary power as input light and focusing the diffracting light with lens. The results show that three-dimensional array of optical trap with a very high peak value of intensity and an intensity gradient is obtained around the focus of the lens. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between the atom and the optical field is much greater than the atom gravity. When the high power laser is used as input light, the generated array of optical trap can also be employed to trap the cold molecules produced by Stark deceleration.

Reference (34)

Catalog

    /

    返回文章
    返回