Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of molecule polarity on the resonance raman spectrum of caroteniod

Wu Yong-Ling Liu Tian-Yuan Sun Cheng-Lin Qu Guan-Nan Li Zuo-Wei

Effect of molecule polarity on the resonance raman spectrum of caroteniod

Wu Yong-Ling, Liu Tian-Yuan, Sun Cheng-Lin, Qu Guan-Nan, Li Zuo-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The resonance Raman spectra of nonpolar molecule all-trans--carotene and polar molecule canthaxanthin in nonpolar CS2 and polar 1,2-dicholoroethane in a temperature range from 243K to 293K are measured. The results show that polarities of the solute and solvent have a great effect on Raman spectrum. Raman scattering cross-section of nonpolar all-trans--carotene in nonpolar solvent CS2 is biggest and its bandwidth is narrowest. Raman scattering cross-section of polar canthaxanthin in polar solvent 1,2-dicholoroethane is smallest and its bandwidth is widest. The experimental phenomena are explained by solvent effects, coherent weakly damped electron-lattice vibration and effective conjugated length.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974067), Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0201) and Innovative Research Team of Jilin Province, China (Grant N0. 20121806).
    [1]

    Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y 2001 Photochemistry and Photobiology 74 444

    [2]

    Luer L, Manzoni C, Cerullo G 2007 Chem. Phys. Lett. 444 61

    [3]

    Zhao X H, Ma F, Wu Y S, Ai X C, Zhang J P 2008 Acta Phys. Sin. 57 289 (in Chinese) [赵晓辉, 马菲, 吴义室, 艾希成, 张建平 2008 物理学报 57 289]

    [4]

    Johansson E M J, Edvinsson T, Odelius M, Hagberg D P, Sun L, Hagfeldt A, Siegbahn H, Rensmo H 2007 J. Phys. Chem. C 111 8580

    [5]

    Widjaja E, Garland M 2010 Talanta 80 1665

    [6]

    Oliveira V E, Castro H V, Edwards H G M, Oliveira L F C 2010 J. Raman Spectrosc. 41 642

    [7]

    Niedzwiedzki D M, Enriquez M M, La Fountain A M, Frank H A 2010 Chem. Phys. 373 80

    [8]

    Frank H A, Young A J, Britton G, Cogdell R J 1999 Advances in Photosynthesis (Dordrecht: Kluwer Academic Publishers)

    [9]

    Liu T Y, Sun C L, Li Z W, Zhou M 2012 Acta Phys. Sin. 61 107801 (in Chinese) [刘天元, 孙成林, 里佐威, 周密 2012 物理学报 61 107801]

    [10]

    Fang C, Liu M L 2012 Acta Phys. Sin. 61 097802 (in Chinese) [房超, 刘马林 2012 物理学报 61 097802]

    [11]

    Valentin M D, Ceola S, Agostini G, Giacometti G M, Angerhofer A, Crescenzi O, Barone V, Carbonera D 2008 Biochimica et Biophysica Acta 1777 295

    [12]

    Shimada R, Hamaguchi H O 2011 J. Chem. Phys. 134 034516

    [13]

    Li Z L, Ou Yang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]

    [14]

    Qu G N, Li D F, Li Z L, Ouyang S L, Li Z W 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威 2010 物理学报 59 3168]

    [15]

    He Z F, Gosztola D, Deng Y, Gao G Q, Wasielewski M R, Kispert L D 2000 J. Phys. Chem. B 104 6668

    [16]

    Applequist J 1991 J. Phys. Chem. 95 3539

    [17]

    Lee J Y, Mhin J B, Kim K S 1997 J. Phys. Chem. 107 4881

    [18]

    Liu W L, Wang D M, Zheng Z R, Li A H, Su W H 2010 J. Chin. Phys. B 19 013102

    [19]

    Kakimoto M, Fujiyama T 1975 Bulletin of the Chemical Society of Japan 48 2258

    [20]

    Krawczyk S 1998 Chemical Physics 230 297

    [21]

    Rimai L, Kilponen R G, Gill D 1970 J. Am. Chem. Soc. 92 3824

    [22]

    Inagaki F, Tasumi M, Miyazawa T 1974 J. Mol. 50 286

    [23]

    Sufrá S, Dellepiane G, Masetti G, Zerbi G 1977 J. Raman Spectrosc 6 267

    [24]

    Warshel A, Dauber P 1977 J. Chem. Phys. 66 5477

    [25]

    Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 173

    [26]

    Biswas N, Umapathy S 1998 Appl. Spectrosc. 52 496

    [27]

    Vardeny Z, Ehrenfreund E, Brafman O 1983 Phys. Rev. Lett. 25 (51) 2326

    [28]

    Koyama Y, Kuki M, Anderson P O, Gillbro T 1996 Photochem. Photobiolo. 63 243

    [29]

    Hoskins L C 1980 J. Chem. Phys. 72 4488

    [30]

    Borges C A M, Marletta A, Faria R M, Guimarãe F E G 2004 Brazilian J. Phys. 34 590

    [31]

    Paraschuk D Y, Kobryanskii Y M 2001 Phys. Rev. Lett. 87 207

  • [1]

    Qian P, Saiki K, Mizoguchi T, Hara K, Sashima T, Fujii R, Koyama Y 2001 Photochemistry and Photobiology 74 444

    [2]

    Luer L, Manzoni C, Cerullo G 2007 Chem. Phys. Lett. 444 61

    [3]

    Zhao X H, Ma F, Wu Y S, Ai X C, Zhang J P 2008 Acta Phys. Sin. 57 289 (in Chinese) [赵晓辉, 马菲, 吴义室, 艾希成, 张建平 2008 物理学报 57 289]

    [4]

    Johansson E M J, Edvinsson T, Odelius M, Hagberg D P, Sun L, Hagfeldt A, Siegbahn H, Rensmo H 2007 J. Phys. Chem. C 111 8580

    [5]

    Widjaja E, Garland M 2010 Talanta 80 1665

    [6]

    Oliveira V E, Castro H V, Edwards H G M, Oliveira L F C 2010 J. Raman Spectrosc. 41 642

    [7]

    Niedzwiedzki D M, Enriquez M M, La Fountain A M, Frank H A 2010 Chem. Phys. 373 80

    [8]

    Frank H A, Young A J, Britton G, Cogdell R J 1999 Advances in Photosynthesis (Dordrecht: Kluwer Academic Publishers)

    [9]

    Liu T Y, Sun C L, Li Z W, Zhou M 2012 Acta Phys. Sin. 61 107801 (in Chinese) [刘天元, 孙成林, 里佐威, 周密 2012 物理学报 61 107801]

    [10]

    Fang C, Liu M L 2012 Acta Phys. Sin. 61 097802 (in Chinese) [房超, 刘马林 2012 物理学报 61 097802]

    [11]

    Valentin M D, Ceola S, Agostini G, Giacometti G M, Angerhofer A, Crescenzi O, Barone V, Carbonera D 2008 Biochimica et Biophysica Acta 1777 295

    [12]

    Shimada R, Hamaguchi H O 2011 J. Chem. Phys. 134 034516

    [13]

    Li Z L, Ou Yang S L, Cao B, Zhou M, Li Z W, Gao S Q 2009 Acta Phys. Sin. 58 6908 (in Chinese) [李占龙, 欧阳顺利, 曹彪, 周密, 里佐威, 高淑琴 2009 物理学报 58 6908]

    [14]

    Qu G N, Li D F, Li Z L, Ouyang S L, Li Z W 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威 2010 物理学报 59 3168]

    [15]

    He Z F, Gosztola D, Deng Y, Gao G Q, Wasielewski M R, Kispert L D 2000 J. Phys. Chem. B 104 6668

    [16]

    Applequist J 1991 J. Phys. Chem. 95 3539

    [17]

    Lee J Y, Mhin J B, Kim K S 1997 J. Phys. Chem. 107 4881

    [18]

    Liu W L, Wang D M, Zheng Z R, Li A H, Su W H 2010 J. Chin. Phys. B 19 013102

    [19]

    Kakimoto M, Fujiyama T 1975 Bulletin of the Chemical Society of Japan 48 2258

    [20]

    Krawczyk S 1998 Chemical Physics 230 297

    [21]

    Rimai L, Kilponen R G, Gill D 1970 J. Am. Chem. Soc. 92 3824

    [22]

    Inagaki F, Tasumi M, Miyazawa T 1974 J. Mol. 50 286

    [23]

    Sufrá S, Dellepiane G, Masetti G, Zerbi G 1977 J. Raman Spectrosc 6 267

    [24]

    Warshel A, Dauber P 1977 J. Chem. Phys. 66 5477

    [25]

    Dudik J M, Johnson C R, Asher S A 1985 J. Chem. Phys. 82 173

    [26]

    Biswas N, Umapathy S 1998 Appl. Spectrosc. 52 496

    [27]

    Vardeny Z, Ehrenfreund E, Brafman O 1983 Phys. Rev. Lett. 25 (51) 2326

    [28]

    Koyama Y, Kuki M, Anderson P O, Gillbro T 1996 Photochem. Photobiolo. 63 243

    [29]

    Hoskins L C 1980 J. Chem. Phys. 72 4488

    [30]

    Borges C A M, Marletta A, Faria R M, Guimarãe F E G 2004 Brazilian J. Phys. 34 590

    [31]

    Paraschuk D Y, Kobryanskii Y M 2001 Phys. Rev. Lett. 87 207

  • [1] Li Zhan-Long, Ouyang Shun-Li, Cao Biao, Zhou Mi, Li Zuo-Wei, Gao Shu-Qin. Effect of solvent refractive index on Raman cross-section of β-carotene. Acta Physica Sinica, 2009, 58(10): 6908-6912. doi: 10.7498/aps.58.6908
    [2] Qu Guan-Nan, Li Dong-Fei, Li Zhan-Long, Ouyang Shun-Li, Li Zuo-Wei, Gao Shu-Qin, Zhou Mi, Men Zhi-Wei, Wang Wei-Wei, Yang Jian-Ge. The influence of solvent density to Raman scattering cross-section of β-carotene. Acta Physica Sinica, 2010, 59(5): 3168-3172. doi: 10.7498/aps.59.3168
    [3] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping. Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [4] Han Qing-Zhen, Geng Chun-Yu, Zhao Yue-Hong, Qi Chuan-Song, Wen Hao. The solvent effects on the complexing reaction of nickel dithiolene and ethylene. Acta Physica Sinica, 2008, 57(1): 96-102. doi: 10.7498/aps.57.96
    [5] Li Ming-Xue, Han Kui, Li Hai-Peng, Huang Zhi-Min, Zhong Qi, Tong Xing, Wu Qiong-Hua. Theoretical study of the second-order nonlinear optical properties of one- and two-dimensional charge transfer molecules in solvents. Acta Physica Sinica, 2010, 59(3): 1809-1815. doi: 10.7498/aps.59.1809
    [6] Li Zhan-Long, Zhou Mi, He Li-Qiao, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Enhanced stimulated Raman scattering of binary solution by intermolecular Fermi resonance. Acta Physica Sinica, 2011, 60(9): 094217. doi: 10.7498/aps.60.094217
    [7] Zhao Ke, Liu Peng-Wei, Han Guang-Chao. Applications of molecular dynamics simulation in nonlinear optics. Acta Physica Sinica, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [8] Qu Guan-Nan, Li Shuo, Sun Mei-Jiao, Xu Sheng-Nan, Liu Yu, Sun Cheng-Lin, Men Zhi-Wei, Li Zuo-Wei. Temperature effects on structural order of all-trans-β-carotene. Acta Physica Sinica, 2013, 62(7): 077801. doi: 10.7498/aps.62.077801
    [9] Cao Biao, Zuo Jian, Li Zuo-Wei, Ouyang Shun-Li, Gao Shu-Qin, Lu Guo-Hui, Jiang Yong-Heng. Amendment to bertran equation and the weak Fermi resonance characteristic of CS2 in C6H6. Acta Physica Sinica, 2009, 58(5): 3538-3542. doi: 10.7498/aps.58.3538
    [10] Zhang Lai-Bin, Ren Ting-Qi. Theoretical study on the photophysical properties of the newly designed guanine analog y-guanine and its tautomers. Acta Physica Sinica, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [11] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [12] Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei. Solvent effects on the electron-vibration coupling constant of β-carotene. Acta Physica Sinica, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [13] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [14] Wang Bin, Feng Hao, Sun Wei-Guo, Zeng Yang-Yang, Dai Wei. Vibrational excitation integrated cross sections of e-H2 scattering. Acta Physica Sinica, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [15] Linghu Rong-Feng, Li Jin, Si Guan-Jie, Yang Xiang-Dong. Theoretical calculation of the low-energy scattering cross sections for He-Li2 system. Acta Physica Sinica, 2010, 59(8): 5424-5428. doi: 10.7498/aps.59.5424
    [16] Xue Si-Min. A theoretical study on non-first-order effects of double differential cross sections. Acta Physica Sinica, 2013, 62(16): 163401. doi: 10.7498/aps.62.163401
    [17] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Zeng Yang-Yang, Wang Bin. Momentum transfer cross sections of low-energy electron scattering from H2 molecule. Acta Physica Sinica, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [18] Li Wen-Feng, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical calculation of integral cross sections of rotational excitation for collisions in isotopes of He atom with Na2 molecule. Acta Physica Sinica, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [19] Han Dong, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Fan Meng. A convolution algorithm of differential coefficients of liquid water based on vibrational Raman scattering. Acta Physica Sinica, 2013, 62(10): 109301. doi: 10.7498/aps.62.109301
    [20] Yu Yu, Jia Wei-Guo, Yan Qing, Ke Neimule, Zhang Jun-Ping. Influence of Raman scattering effect and self-steepening effect on the propagation characteristic of picosecond solitons. Acta Physica Sinica, 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
  • Citation:
Metrics
  • Abstract views:  1905
  • PDF Downloads:  928
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2012
  • Accepted Date:  04 September 2012
  • Published Online:  05 February 2013

Effect of molecule polarity on the resonance raman spectrum of caroteniod

  • 1. State Key Laboratory of Superhard Materials, Changchun 130012, China;
  • 2. College of Physics, Jilin University, Changchun 130012, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10974067), Program for New Century Excellent Talents in University, China (Grant No. NCET-11-0201) and Innovative Research Team of Jilin Province, China (Grant N0. 20121806).

Abstract: The resonance Raman spectra of nonpolar molecule all-trans--carotene and polar molecule canthaxanthin in nonpolar CS2 and polar 1,2-dicholoroethane in a temperature range from 243K to 293K are measured. The results show that polarities of the solute and solvent have a great effect on Raman spectrum. Raman scattering cross-section of nonpolar all-trans--carotene in nonpolar solvent CS2 is biggest and its bandwidth is narrowest. Raman scattering cross-section of polar canthaxanthin in polar solvent 1,2-dicholoroethane is smallest and its bandwidth is widest. The experimental phenomena are explained by solvent effects, coherent weakly damped electron-lattice vibration and effective conjugated length.

Reference (31)

Catalog

    /

    返回文章
    返回