-
荧光核酸碱基类似物的设计合成是众多研究领域的热点课题. 本文利用密度泛函理论(DFT)和含时密度泛函理论(TDDFT)考察了新型鸟嘌呤类似物y-鸟嘌呤(yG-t1) 及其五个异构体(yG-t2到yG-t6)的结构性质、电子性质和光谱性质, 同时考察了甲醇溶剂和碱基配对对其光谱性质的影响. 研究表明, 气相中y-鸟嘌呤的标准结构并不是最稳定的结构, 其具有三个能量相近的异构体, y-鸟嘌呤最有可能以这三种形式存在. 光谱性质研究表明y-鸟嘌呤的最大吸收波长比天然鸟嘌呤大得多, 人们可以对其进行选择性激发. y- 鸟嘌呤的标准结构与其异构体显示出不同的光谱特性, 因此可以利用其电子光谱指纹对它们进行区分. 研究发现甲醇溶剂将使y-鸟嘌呤标准结构的最大吸收波长和荧光发生蓝移, 而使其他异构体相应值发生红移; 与胞嘧啶配对将使yG-t1, yG-t2, yG-t5 和yG-t6的最大吸收波长和荧光波长发生蓝移, 表明y-鸟嘌呤的电子光谱性质受环境影响较大.
[1] Wilhelmsson L M 2010 Quarter. Rev. Biophys. 43 159
[2] Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A 2000 Science 290 1347
[3] Liu H, Song Q, Yang Y, Li Y, Wang H 2014 J Mol. Moldel. 20 2100
[4] Lu H, He K, Kool E T 2004 Angew. Chem., Int. Ed. 43 5834
[5] Zhang L, Zhou L, Tian J, Li X 2014 Chem. Phys. Lett. 597 69
[6] Wojciechowski F, Leumann C 2011 Chem. Soc. Rev. 40 5669
[7] Liu H, Gao J, Kool E T 2005 J. Am. Chem. Soc. 127 1396
[8] Zhang L, Ren T, Tian J, Yang X, Zhou L, Li X 2013 J. Phys. Chem. B 117 3983
[9] Sharma P, Lait L A, Wetmore S D 2013 Phys. Chem. Chem. Phys. 15 15538
[10] Krueger A T, Kool E T 2008 J. Am. Chem. Soc. 130 3989
[11] Varsano D, Garbesi A, Felice R D 2007 J. Phys. Chem. B 111 14012
[12] Zhang L, Li H, Chen X, Cukier R I, Bu Y 2009 J. Phys. Chem. B 113 1173
[13] Zhang L, Ren T 2013 Acta Phys. Sin. 62 107102 (in Chinese) [张来斌, 任廷琦 2013 物理学报 62 107102]
[14] Laxer A, Major D T, Gottlieb H E, Fischer B 2001 J. Org. Chem. 66 5463
[15] Frisch M J, Trucks G W, Schlegel H B et al 2003 Gaussian 03, Revision B. 03, Gaussian, Inc., Pittsburgh, P A
[16] Becke A D 1993 J. Chem. Phys. 98 5648
[17] Lee C, Yang W, Parr R G 1988 Phys. Rev. B: Condens. Matter. 37 785
[18] Foresman J B, Head-Gordon M, Pople J A, Frisch M J 1992 J. Phys. Chem. 96 135
[19] Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117
[20] Miertus S, Tomasi J 1982 Chem. Phys. 65 239
[21] Fuentes-Cabrera M, Sumpter B G, Lipkowski P, Wells J C 2006 J. Phys. Chem. B 110 6379
[22] Dreuw A, Head-Gordon M 2005 Chem. Rev. 105 4009
-
[1] Wilhelmsson L M 2010 Quarter. Rev. Biophys. 43 159
[2] Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A 2000 Science 290 1347
[3] Liu H, Song Q, Yang Y, Li Y, Wang H 2014 J Mol. Moldel. 20 2100
[4] Lu H, He K, Kool E T 2004 Angew. Chem., Int. Ed. 43 5834
[5] Zhang L, Zhou L, Tian J, Li X 2014 Chem. Phys. Lett. 597 69
[6] Wojciechowski F, Leumann C 2011 Chem. Soc. Rev. 40 5669
[7] Liu H, Gao J, Kool E T 2005 J. Am. Chem. Soc. 127 1396
[8] Zhang L, Ren T, Tian J, Yang X, Zhou L, Li X 2013 J. Phys. Chem. B 117 3983
[9] Sharma P, Lait L A, Wetmore S D 2013 Phys. Chem. Chem. Phys. 15 15538
[10] Krueger A T, Kool E T 2008 J. Am. Chem. Soc. 130 3989
[11] Varsano D, Garbesi A, Felice R D 2007 J. Phys. Chem. B 111 14012
[12] Zhang L, Li H, Chen X, Cukier R I, Bu Y 2009 J. Phys. Chem. B 113 1173
[13] Zhang L, Ren T 2013 Acta Phys. Sin. 62 107102 (in Chinese) [张来斌, 任廷琦 2013 物理学报 62 107102]
[14] Laxer A, Major D T, Gottlieb H E, Fischer B 2001 J. Org. Chem. 66 5463
[15] Frisch M J, Trucks G W, Schlegel H B et al 2003 Gaussian 03, Revision B. 03, Gaussian, Inc., Pittsburgh, P A
[16] Becke A D 1993 J. Chem. Phys. 98 5648
[17] Lee C, Yang W, Parr R G 1988 Phys. Rev. B: Condens. Matter. 37 785
[18] Foresman J B, Head-Gordon M, Pople J A, Frisch M J 1992 J. Phys. Chem. 96 135
[19] Miertus S, Scrocco E, Tomasi J 1981 Chem. Phys. 55 117
[20] Miertus S, Tomasi J 1982 Chem. Phys. 65 239
[21] Fuentes-Cabrera M, Sumpter B G, Lipkowski P, Wells J C 2006 J. Phys. Chem. B 110 6379
[22] Dreuw A, Head-Gordon M 2005 Chem. Rev. 105 4009
引用本文: |
Citation: |
计量
- 文章访问数: 1372
- PDF下载量: 134
- 被引次数: 0