Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photothermal response of extracellular solution to the near-infrared laser irradiation determined by its optical absorption properties

Guan Kui-Wen Li Xin-Yu Liu Jia Sun Chang-Sen

Photothermal response of extracellular solution to the near-infrared laser irradiation determined by its optical absorption properties

Guan Kui-Wen, Li Xin-Yu, Liu Jia, Sun Chang-Sen
PDF
Get Citation
  • Photothermal effect has been proved to mediate the interaction of near-infrared laser with biological tissue. However, the generation and transformation mechanism of the photothermal effect is still unclear. In this paper, we combine a patch clamp technique with the laser simulation to figure out the chromophores, which are responsible for the photothermal effect generation. This method is based on the fact that temperature dependence of solution can be measured as resistance changes. A dual-wavelength infrared light irradiating the open pipette in extracellular solution is designed to study the relation between the photothermal effect and the absorption property of solution. The principle is based on that the nearly ten times difference in the magnitude of the optical absorption coefficient in water (0.502 cm-1 at 980 nm and 0.0378 cm-1 at 845 nm), makes the corresponding proportional absorption-driven temperature rise. The photothermal effect in laser-tissue interaction can be assessed in two stages: the establishment and the dissipation of the temperature rise. In the establishment stage, an open pipette method is employed to measure the temperature rise by fabricating a glass pipette which is filled with electrolyte solution. In the dissipation stage, the electrophysiological function of a living neuron cell is studied based on a patch clamp. Theoretical calculation and experimental results show that the optical absorption properties of solution determine the photothermal effect. The results can be used to study the photothermal effect in laser-tissue interaction.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 30870582, 31070757).
    [1]

    Welch A J, Martin J C van Gemert 2011 Optical Thermal Response of Laser-Irradiated Tissue (Springer), 2nd Edition

    [2]

    Liu Y, Liu X J, Qi B B 2011 Acta Phys. Sin. 60 074204 (in Chinese) [刘迎, 刘小君, 齐贝贝 2011 物理学报 60 074204]

    [3]

    Deng Y, Igor M 2010 Acta Phys. Sin. 59 1396 (in Chinese) [邓勇, Igor Meglinski 2010 物理学报 59 1396]

    [4]

    Jacques S L 1992 Surg. Clin. North Am. 72 531

    [5]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577

    [6]

    Lapotko D, Tat'yana R, Zharov V 2002 J. Biomed. Opt. 7 425

    [7]

    Yang S H, Yin G Z 2008 Acta Phys. Sin. 58 4760 (in Chinese) [杨思华, 阴广志 2008 物理学报 58 4760]

    [8]

    Lapotko D, Shnip A, Lukianova E 2005 J. Biomed. Opt. 10 014006

    [9]

    Wells J, Kao C, Mariappan K 2005 Opt. Lett. 30 504

    [10]

    Hirase H, Nikolenko V, Goldberg J 2002 J. Neurobiol. 51 237

    [11]

    Wells J, Kao C, Konrad P 2007 Biophys. J. 93 2567

    [12]

    Qiao X Y, Li G, Dong Y E 2008 Acta Phys. Sin. 57 1259 (in Chinese) [乔晓艳, 李刚, 董有尔 2008 物理学报 57 1259]

    [13]

    Qiao X Y, Li G, Lin L 2007 Acta Phys. Sin. 56 2448 (in Chinese) [乔晓艳, 李刚, 林凌 2007 物理学报 56 2448]

    [14]

    Chu Q J, Yin H W, Weng Y X 2007 Chin. Phys. 16 3052

    [15]

    Wells J, Konrad P, Kao C 2007 J. Neurosci. Meth. 163 326

    [16]

    Li W, Stuurman N, Ou G S 2012 Neurosci. Bull 28 333

    [17]

    Shapiro M G, Homma K, Villarreal S 2012 Nat. Commun. 3 1

    [18]

    Wieliczka M, Weng S, Querry R 1989 Appl. Opt. 28 1714

    [19]

    Palmer K F, Williams D 1974 J. Opt. Soc. Am. 64 1107

    [20]

    Martin G, Gerald L, Welchzk A 1996 Phys. Med. Biol. 41 1381

    [21]

    Guan K W, Jiang Y Q, Sun C S 2011 Opt. Laser Technol. 43 425

    [22]

    Bao M F, Qian Z Y, Li W T 2011 Acta Opt. Sin. 40 718 (in Chinese) [包美芳, 钱志余, 李韪韬 2011 光子学报 40 718]

    [23]

    Zhou J W, Xu X, Yin Z Q 2005 Chin. J. Lasers 32 139 (in Chinese) [周静伟, 徐旭, 尹招琴 2005 中国激光 32 139]

    [24]

    Choi B, Welch A J 2001 Lasers Surg. Med. 29 351

    [25]

    Yao J, Liu B, Qin F 2009 Biophys. J. 96 3611

    [26]

    Liang S S, Yang F, Zhou C 2009 Cell Biochem. Biophys. 53 33

    [27]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [28]

    Kuyucak S, Chung S H 1994 Biophys. Chem. 52 15

    [29]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [30]

    Abbate G, Bernini U, Ragozzino E 1978 J. Phys. D: Appl. Phys. 11 1167

    [31]

    Jean K P 2006 J. Appl. Mech. 73 5

  • [1]

    Welch A J, Martin J C van Gemert 2011 Optical Thermal Response of Laser-Irradiated Tissue (Springer), 2nd Edition

    [2]

    Liu Y, Liu X J, Qi B B 2011 Acta Phys. Sin. 60 074204 (in Chinese) [刘迎, 刘小君, 齐贝贝 2011 物理学报 60 074204]

    [3]

    Deng Y, Igor M 2010 Acta Phys. Sin. 59 1396 (in Chinese) [邓勇, Igor Meglinski 2010 物理学报 59 1396]

    [4]

    Jacques S L 1992 Surg. Clin. North Am. 72 531

    [5]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577

    [6]

    Lapotko D, Tat'yana R, Zharov V 2002 J. Biomed. Opt. 7 425

    [7]

    Yang S H, Yin G Z 2008 Acta Phys. Sin. 58 4760 (in Chinese) [杨思华, 阴广志 2008 物理学报 58 4760]

    [8]

    Lapotko D, Shnip A, Lukianova E 2005 J. Biomed. Opt. 10 014006

    [9]

    Wells J, Kao C, Mariappan K 2005 Opt. Lett. 30 504

    [10]

    Hirase H, Nikolenko V, Goldberg J 2002 J. Neurobiol. 51 237

    [11]

    Wells J, Kao C, Konrad P 2007 Biophys. J. 93 2567

    [12]

    Qiao X Y, Li G, Dong Y E 2008 Acta Phys. Sin. 57 1259 (in Chinese) [乔晓艳, 李刚, 董有尔 2008 物理学报 57 1259]

    [13]

    Qiao X Y, Li G, Lin L 2007 Acta Phys. Sin. 56 2448 (in Chinese) [乔晓艳, 李刚, 林凌 2007 物理学报 56 2448]

    [14]

    Chu Q J, Yin H W, Weng Y X 2007 Chin. Phys. 16 3052

    [15]

    Wells J, Konrad P, Kao C 2007 J. Neurosci. Meth. 163 326

    [16]

    Li W, Stuurman N, Ou G S 2012 Neurosci. Bull 28 333

    [17]

    Shapiro M G, Homma K, Villarreal S 2012 Nat. Commun. 3 1

    [18]

    Wieliczka M, Weng S, Querry R 1989 Appl. Opt. 28 1714

    [19]

    Palmer K F, Williams D 1974 J. Opt. Soc. Am. 64 1107

    [20]

    Martin G, Gerald L, Welchzk A 1996 Phys. Med. Biol. 41 1381

    [21]

    Guan K W, Jiang Y Q, Sun C S 2011 Opt. Laser Technol. 43 425

    [22]

    Bao M F, Qian Z Y, Li W T 2011 Acta Opt. Sin. 40 718 (in Chinese) [包美芳, 钱志余, 李韪韬 2011 光子学报 40 718]

    [23]

    Zhou J W, Xu X, Yin Z Q 2005 Chin. J. Lasers 32 139 (in Chinese) [周静伟, 徐旭, 尹招琴 2005 中国激光 32 139]

    [24]

    Choi B, Welch A J 2001 Lasers Surg. Med. 29 351

    [25]

    Yao J, Liu B, Qin F 2009 Biophys. J. 96 3611

    [26]

    Liang S S, Yang F, Zhou C 2009 Cell Biochem. Biophys. 53 33

    [27]

    Xu T, Zhang C P, Chen G Y 2005 Chin. Phys. 14 1813

    [28]

    Kuyucak S, Chung S H 1994 Biophys. Chem. 52 15

    [29]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [30]

    Abbate G, Bernini U, Ragozzino E 1978 J. Phys. D: Appl. Phys. 11 1167

    [31]

    Jean K P 2006 J. Appl. Mech. 73 5

  • [1] Hu Xiaoliang, Liang Hong, Wang Huili. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 1-10. doi: 10.7498/aps.69.20191504
    [2] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 1-11. doi: 10.7498/aps.69.20191718
  • Citation:
Metrics
  • Abstract views:  814
  • PDF Downloads:  652
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2012
  • Accepted Date:  18 October 2012
  • Published Online:  05 March 2013

Photothermal response of extracellular solution to the near-infrared laser irradiation determined by its optical absorption properties

  • 1. Lab of Biomedical Optics, College of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116023, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 30870582, 31070757).

Abstract: Photothermal effect has been proved to mediate the interaction of near-infrared laser with biological tissue. However, the generation and transformation mechanism of the photothermal effect is still unclear. In this paper, we combine a patch clamp technique with the laser simulation to figure out the chromophores, which are responsible for the photothermal effect generation. This method is based on the fact that temperature dependence of solution can be measured as resistance changes. A dual-wavelength infrared light irradiating the open pipette in extracellular solution is designed to study the relation between the photothermal effect and the absorption property of solution. The principle is based on that the nearly ten times difference in the magnitude of the optical absorption coefficient in water (0.502 cm-1 at 980 nm and 0.0378 cm-1 at 845 nm), makes the corresponding proportional absorption-driven temperature rise. The photothermal effect in laser-tissue interaction can be assessed in two stages: the establishment and the dissipation of the temperature rise. In the establishment stage, an open pipette method is employed to measure the temperature rise by fabricating a glass pipette which is filled with electrolyte solution. In the dissipation stage, the electrophysiological function of a living neuron cell is studied based on a patch clamp. Theoretical calculation and experimental results show that the optical absorption properties of solution determine the photothermal effect. The results can be used to study the photothermal effect in laser-tissue interaction.

Reference (31)

Catalog

    /

    返回文章
    返回