Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function

Zhao Peng-Cheng Liao Cheng Yang Dang Zhong Xuan-Ming Lin Wen-Bin

High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function

Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin
PDF
Get Citation
  • The electron energy distribution function (EEDF) is usually assumed to be of the Maxwellian distribution in the fluid model in the simulation of high power microwave breakdown in gas. However, this assumption may lead to some large errors in the simulations. In this paper we compute the non-equilibrium EEDF via solving the Boltzmann equation directly, and incorporate it into the fluid model for argon breakdown. Numerical simulations show that the breakdown time obtained by the fluid model with the non-equilibrium EEDF accords well with the Particle-in-cell-Monte Carlo collision simulation result, while the Maxwellian EEDF has higher energy tail and results in faster breakdown time at low mean electron energy. Based on the non-equilibrium EEDF, the dependence of the breakdown threshold on the pressure predicted by the fluid model accord well with the argon breakdown experimental result.
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076022), the Doctoral Found of Ministry of Education of China (Grant No. 20110184110016), and the Fundamental Research Funds for the Central Universities.
    [1]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [2]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011 物理学报 60 025217]

    [3]

    Yu D, Pang X, Jin X, Zhou D, Guo Y 2011 High Power Laser and Particle Beams 23 449 (in Chinese) [余道杰, 庞学民, 金晓磊, 周东方, 郭玉华 2011 强激光与粒子束 23 449]

    [4]

    Zhang Z, Shao X, Zhang G, Li Y, Peng Z 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [5]

    Cai L B, Wang J G, Zhu X, Wang Y, Xuan C, Xia H 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [6]

    Wang G P, Xiang F, Tan J, Cao S H, Luo M, Kang Q, Chang A B 2011 Acta Phys. Sin. 60 072901 (in Chinese) [王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安壁 2011 物理学报 60 072901]

    [7]

    Liu G Z, Liu J, Huang W, Zhou J, Song X, Ning H 2000 Chin. Phys. 9 757

    [8]

    Chaudhury B, Boeuf J P 2010 IEEE Trans. Plasma Sci. 38 2281

    [9]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [10]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [11]

    Yee J H, Alvarez R, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [12]

    Kim J, Kuo S P, Kossey P 1995 J. Plasma Phys. 53 253

    [13]

    Zhao P, Liao C, Lin W, Chang C, Fu H 2011 Phys. Plasmas 18 102111

    [14]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504

    [15]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol 14 722

    [16]

    Zhao P, Liao C, Lin W 2011 J. of Electromagn. Waves and Appl. 25 2365

    [17]

    Nam S K, Verboncoeur J P 2009 Computer Phys. Communications 180 628

    [18]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506

    [19]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

  • [1]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [2]

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011 物理学报 60 025217]

    [3]

    Yu D, Pang X, Jin X, Zhou D, Guo Y 2011 High Power Laser and Particle Beams 23 449 (in Chinese) [余道杰, 庞学民, 金晓磊, 周东方, 郭玉华 2011 强激光与粒子束 23 449]

    [4]

    Zhang Z, Shao X, Zhang G, Li Y, Peng Z 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [5]

    Cai L B, Wang J G, Zhu X, Wang Y, Xuan C, Xia H 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [6]

    Wang G P, Xiang F, Tan J, Cao S H, Luo M, Kang Q, Chang A B 2011 Acta Phys. Sin. 60 072901 (in Chinese) [王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安壁 2011 物理学报 60 072901]

    [7]

    Liu G Z, Liu J, Huang W, Zhou J, Song X, Ning H 2000 Chin. Phys. 9 757

    [8]

    Chaudhury B, Boeuf J P 2010 IEEE Trans. Plasma Sci. 38 2281

    [9]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [10]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [11]

    Yee J H, Alvarez R, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [12]

    Kim J, Kuo S P, Kossey P 1995 J. Plasma Phys. 53 253

    [13]

    Zhao P, Liao C, Lin W, Chang C, Fu H 2011 Phys. Plasmas 18 102111

    [14]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504

    [15]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol 14 722

    [16]

    Zhao P, Liao C, Lin W 2011 J. of Electromagn. Waves and Appl. 25 2365

    [17]

    Nam S K, Verboncoeur J P 2009 Computer Phys. Communications 180 628

    [18]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506

    [19]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

  • [1] Zhou Qian-Hong, Dong Zhi-Wei. Theoretical study on the electron energy distribution function of weakly ionized air plasma. Acta Physica Sinica, 2013, 62(1): 015201. doi: 10.7498/aps.62.015201
    [2] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [3] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [4] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [5] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [6] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [7] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [8] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [9] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [10] Zhang Zeng-Hui, Zhang Guan-Jun, Shao Xian-Jun, Chang Zheng-Shi, Peng Zhao-Yu, Xu Hao. Modelling study of dielectric barrier glow discharge in Ar/NH3 mixture at atmospheric pressure. Acta Physica Sinica, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
  • Citation:
Metrics
  • Abstract views:  1106
  • PDF Downloads:  681
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2012
  • Accepted Date:  10 October 2012
  • Published Online:  05 March 2013

High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function

  • 1. Institute of Electromagnetics, Southwest Jiaotong University, Chengdu 610031, China
Fund Project:  Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076022), the Doctoral Found of Ministry of Education of China (Grant No. 20110184110016), and the Fundamental Research Funds for the Central Universities.

Abstract: The electron energy distribution function (EEDF) is usually assumed to be of the Maxwellian distribution in the fluid model in the simulation of high power microwave breakdown in gas. However, this assumption may lead to some large errors in the simulations. In this paper we compute the non-equilibrium EEDF via solving the Boltzmann equation directly, and incorporate it into the fluid model for argon breakdown. Numerical simulations show that the breakdown time obtained by the fluid model with the non-equilibrium EEDF accords well with the Particle-in-cell-Monte Carlo collision simulation result, while the Maxwellian EEDF has higher energy tail and results in faster breakdown time at low mean electron energy. Based on the non-equilibrium EEDF, the dependence of the breakdown threshold on the pressure predicted by the fluid model accord well with the argon breakdown experimental result.

Reference (19)

Catalog

    /

    返回文章
    返回