Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

Shao Jian-Li Wang Pei He An-Min Qin Cheng-Sen Xin Jian-Ting Gu Yu-Qiu

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

Shao Jian-Li, Wang Pei, He An-Min, Qin Cheng-Sen, Xin Jian-Ting, Gu Yu-Qiu
PDF
Get Citation
  • Employing an embedded-atom-method potential and molecular dynamics simulations, we have simulated the microscopic process and dynamical properties of the dynamic failure of metal Al specimens under triangular wave loading. The microstructure evolution of the sample is analyzed using the central symmetry parameter, while the difference of morphology between non molten and molten states is also explained. The pressure profiles were calculated based on the virial theorem, and the results show that the tensile strength of the material is decreased considerably in its molten state. Using the simulation results for different impact velocities, we discuss the variation of morphology and density distribution, from which the change of damage depth in the process from non molten to molten states is obtained. Our simulations also suggest that: the tensile strength of material derived from acoustic approximation is distinctively higher than the peak of internal stress from virial theorem for the melted state.
    • Funds: Project Project Supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics, China (Grant Nos. 2009A0101007, 2012B0101013).
    [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [2] Shao Jian-Li, Wang Pei, He An-Min, Qin Cheng-Sen. Microscopic simulation on shock-induced micro-jet ejection from metal Al surface. Acta Physica Sinica, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [3] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [4] Chen Kai-Guo, Deng Xiao-Liang, Ma Wen, Jing Fu-Qian, Zhu Wen-Jun, He Hong-Liang. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [5] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [6] Chen Jun, Zhang Jing-Lin, Chen Dong-Quan, Jing Fu-Qian. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [7] Zhu Wen-Jun, Chen Kai-Guo, Ma Wen, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [8] Wu Deng-Xue, He Hong-Liang, Deng Xiao-Liang, Zhu Wen-Jun, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [9] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [10] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [11] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] Jiang Guo-Ping, Hao Hong, Zeng Chun-Hang, Hao Yi-Fei, Wu Ru-Jun, Liu Ji-Chao. Experimental study of friction effect under impact loading. Acta Physica Sinica, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [13] Li Yong-Hong, Liu Fu-Sheng, Cheng Xiao-Li, Zhang Ming-Jian, Xue Xue-Dong. Crystallization of water induced by fused quartz under shock compression. Acta Physica Sinica, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [15] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [16] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [17] Ma Wen, Jing Fu-Qian, Zhang Ya-Lin, Zhu Wen-Jun. Shock-induced phase transformation in nanocrystalline iron. Acta Physica Sinica, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [18] Deng Xiao-Liang, Song Zhen-Fei, He Hong-Liang, Zhu Wen-Jun, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [19] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
  • Citation:
Metrics
  • Abstract views:  807
  • PDF Downloads:  466
  • Cited By: 0
Publishing process
  • Received Date:  01 October 2012
  • Accepted Date:  02 November 2012
  • Published Online:  05 April 2013

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

  • 1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
  • 2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
  • 3. Research Center of Laser Fusion, CAEP, Mianyang 621900, China
Fund Project:  Project Project Supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics, China (Grant Nos. 2009A0101007, 2012B0101013).

Abstract: Employing an embedded-atom-method potential and molecular dynamics simulations, we have simulated the microscopic process and dynamical properties of the dynamic failure of metal Al specimens under triangular wave loading. The microstructure evolution of the sample is analyzed using the central symmetry parameter, while the difference of morphology between non molten and molten states is also explained. The pressure profiles were calculated based on the virial theorem, and the results show that the tensile strength of the material is decreased considerably in its molten state. Using the simulation results for different impact velocities, we discuss the variation of morphology and density distribution, from which the change of damage depth in the process from non molten to molten states is obtained. Our simulations also suggest that: the tensile strength of material derived from acoustic approximation is distinctively higher than the peak of internal stress from virial theorem for the melted state.

Reference (33)

Catalog

    /

    返回文章
    返回