Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

Shao Jian-Li Wang Pei He An-Min Qin Cheng-Sen Xin Jian-Ting Gu Yu-Qiu

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

Shao Jian-Li, Wang Pei, He An-Min, Qin Cheng-Sen, Xin Jian-Ting, Gu Yu-Qiu
PDF
Get Citation
  • Employing an embedded-atom-method potential and molecular dynamics simulations, we have simulated the microscopic process and dynamical properties of the dynamic failure of metal Al specimens under triangular wave loading. The microstructure evolution of the sample is analyzed using the central symmetry parameter, while the difference of morphology between non molten and molten states is also explained. The pressure profiles were calculated based on the virial theorem, and the results show that the tensile strength of the material is decreased considerably in its molten state. Using the simulation results for different impact velocities, we discuss the variation of morphology and density distribution, from which the change of damage depth in the process from non molten to molten states is obtained. Our simulations also suggest that: the tensile strength of material derived from acoustic approximation is distinctively higher than the peak of internal stress from virial theorem for the melted state.
    • Funds: Project Project Supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics, China (Grant Nos. 2009A0101007, 2012B0101013).
    [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [2] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [3] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [4] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [5] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [6] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [7] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
  • Citation:
Metrics
  • Abstract views:  861
  • PDF Downloads:  466
  • Cited By: 0
Publishing process
  • Received Date:  01 October 2012
  • Accepted Date:  02 November 2012
  • Published Online:  05 April 2013

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

  • 1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
  • 2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
  • 3. Research Center of Laser Fusion, CAEP, Mianyang 621900, China
Fund Project:  Project Project Supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics, China (Grant Nos. 2009A0101007, 2012B0101013).

Abstract: Employing an embedded-atom-method potential and molecular dynamics simulations, we have simulated the microscopic process and dynamical properties of the dynamic failure of metal Al specimens under triangular wave loading. The microstructure evolution of the sample is analyzed using the central symmetry parameter, while the difference of morphology between non molten and molten states is also explained. The pressure profiles were calculated based on the virial theorem, and the results show that the tensile strength of the material is decreased considerably in its molten state. Using the simulation results for different impact velocities, we discuss the variation of morphology and density distribution, from which the change of damage depth in the process from non molten to molten states is obtained. Our simulations also suggest that: the tensile strength of material derived from acoustic approximation is distinctively higher than the peak of internal stress from virial theorem for the melted state.

Reference (33)

Catalog

    /

    返回文章
    返回