搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同荷载作用下二维硼烯的力学性能及变形破坏机理研究

韩同伟 李选政 赵泽若 顾叶彤 马川 张小燕

引用本文:
Citation:

不同荷载作用下二维硼烯的力学性能及变形破坏机理研究

韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕

Investigation on the mechanical properties and deformation mechanisms of 2D borophene under different loadings

Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan
PDF
导出引用
  • 二维硼烯具有丰富的物理和化学性质,在凝聚态物理和材料科学等领域引起了广泛的研究兴趣,但硼烯在不同荷载作用下的力学性能和变形破坏机理仍需进一步研究。本文采用分子动力学方法模拟了硼烯的拉伸、剪切和纳米压痕破坏过程,获得了硼烯的关键力学性能参数,并从两种不同类型的B-B键长随应变/压入深度的变化规律分析了硼烯在不同载荷作用下的力学性能和变形破坏机理。研究发现,硼烯的拉伸力学性能表现出显著的各向异性特性,沿扶手椅方向的杨氏模量和强度远高于沿锯齿方向,而硼烯的剪切力学性能的各项异性特性不明显,产生以上现象的原因可归因于强σ键B-B键和弱多中心键的不同贡献。研究还发现,硼烯在球形和圆柱形压头载荷作用下表现出不同的力学响应规律。在球形压头载荷作用下,硼烯能承受的最大压入载荷远低于圆柱形压头的情况,而且无法测得与拉伸一致的本征力学性能参数,而采用圆柱形压头沿不同的方向压入硼烯薄膜时,硼烯也表现出与拉伸时类似的各向异性特性,并且可以测得与拉伸时一致的杨氏模量等力学性能参数。本文还研究了压痕模型尺寸与压头半径的比值、压头加载速率和加载温度等因素对硼烯力学性能参数的影响规律。以上研究结果可为基于硼烯的微/纳米机电系统的实际应用提供重要指导。
    Two dimensional borophene has attracted widespread research interest in condensed matter physics and materials science because of its rich physical and chemical properties. However, the mechanical properties and deformation mechanisms of borophene under different loadings are still unclear and not thoroughly investigated. In this work, the tensile, shear, and nanoindentation failure processes of borophene are simulated via molecular dynamics method to obtain the key mechanical parameters of borophene. The mechanical response and deformation mechanism of borophene under different loadings are analyzed from the variation of B-B bond length with the strain/indentation depth. The results show that the tensile mechanical properties of borophene exhibit significant anisotropic characteristics, with the Young's modulus and strength along the armchair direction being much higher than those along the zigzag direction. However, the anisotropy of the shear mechanical properties of borophene is not significant. The reason for this phenomenon can be attributed to the different contributions of the strong B-B σ bonds and weak multi-center bonds in borophene when it is stretched in different directions. It is also found that borophene exhibits different mechanical response under spherical and cylindrical indentation. The force at failure of the borophene under spherical indentation is much lower than the value under cylindrical one, and the intrinsic mechanical parameters of borophene under spherical indentation cannot be estimated accurately because of the anisotropic characteristics of borophene. However, under cylindrical indentation borophene exhibits similar anisotropic characteristics as under tension, and the mechanical parameters such as Young's modulus can be measured accurately that are consistent with those obtained under tension. In addition, the effects of the borophene indentation model and spherical/cylindrical indenter size, the loading rate and temperature on the mechanical parameters of borophene are also studied systematically. The results indicate that the Young's moduli of borophene from spherical indentation are highly estimated when a/R <15 but not sensitive when a/R >15, while the results from cylindrical indentation are hardly affected by the values of L/R and W/L. The Young's modulus of borophene slightly decreases with increasing temperature, while the loading rate has almost no effect on the value of Young's modulus of borophene. These findings are expected to provide important guidelines for the practical applications of borophene based micro/nano electromechanical systems.Two dimensional borophene has attracted widespread research interest in condensed matter physics and materials science because of its rich physical and chemical properties. However, the mechanical properties and deformation mechanisms of borophene under different loadings are still unclear and not thoroughly investigated. In this work, the tensile, shear, and nanoindentation failure processes of borophene are simulated via molecular dynamics method to obtain the key mechanical parameters of borophene. The mechanical response and deformation mechanism of borophene under different loadings are analyzed from the variation of B-B bond length with the strain/indentation depth. The results show that the tensile mechanical properties of borophene exhibit significant anisotropic characteristics, with the Young's modulus and strength along the armchair direction being much higher than those along the zigzag direction. However, the anisotropy of the shear mechanical properties of borophene is not significant. The reason for this phenomenon can be attributed to the different contributions of the strong B-B σ bonds and weak multi-center bonds in borophene when it is stretched in different directions. It is also found that borophene exhibits different mechanical response under spherical and cylindrical indentation. The force at failure of the borophene under spherical indentation is much lower than the value under cylindrical one, and the intrinsic mechanical parameters of borophene under spherical indentation cannot be estimated accurately because of the anisotropic characteristics of borophene. However, under cylindrical indentation borophene exhibits similar anisotropic characteristics as under tension, and the mechanical parameters such as Young's modulus can be measured accurately that are consistent with those obtained under tension. In addition, the effects of the borophene indentation model and spherical/cylindrical indenter size, the loading rate and temperature on the mechanical parameters of borophene are also studied systematically. The results indicate that the Young's moduli of borophene from spherical indentation are highly estimated when a/R<15 but not sensitive when a/R>15, while the results from cylindrical indentation are hardly affected by the values of L/R and W/L. The Young's modulus of borophene slightly decreases with increasing temperature, while the loading rate has almost no effect on the value of Young's modulus of borophene. These findings are expected to provide important guidelines for the practical applications of borophene based micro/nano electromechanical systems.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    [2]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS nano 7 4414

    [3]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [4]

    Bertolazzi S, Brivio J and Kis A 2011 ACS nano 5 9703

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS nano 8 4033

    [6]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 564

    [7]

    Lau K C, Pati R, Pandey R and Pineda A C 2006 Chem. Phys. Lett. 418 549

    [8]

    Kunstmann J and Quandt A 2006 Phys. Rev. B 74 035413

    [9]

    Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [10]

    Yang X, Ding Y and Ni J 2008 Phys. Rev. B 77 041402(R)

    [11]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513

    [12]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563

    [13]

    Li W H, Chen L and Wu K H 2022 Acta Phys. Sin. 71 108104(in Chinese)[李文辉,陈岚,吴克辉.硼烯的实验制备.物理学报, 2022, 71:108104]

    [14]

    Zhang Z H, Yang Y, Penev E S and Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [15]

    Kong L J, Liu L R, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H and Wu K H 2019 Nanoscale 11 15605

    [16]

    Zhong H X, Huang K X, Yu G D and Yuan S J 2018 Phys. Rev. B 98 054104

    [17]

    Peng B, Zhang H, Shao H, Xu Y, Zhang R and Zhu H 2016 J. Mater. Chem. C 4 3592

    [18]

    Mortazavi B, Rahaman O, Dianat A and Rabczuk T 2016 Phys. Chem. Chem. Phys. 18 27405

    [19]

    Wang Z, Lu T Y, Wang H Q, Feng Y P and Zheng J C 2016 Phys. Chem. Chem. Phys. 18 31424

    [20]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F and Wan X G 2016 New J. Phys. 18 073016

    [21]

    Faghihnasiri M, Jafari H, Ramazani A, Shabani M, Estalaki S M and Larson R G 2019 J. Appl. Phys. 125 145107

    [22]

    Xiao R C, Shao D F, Lu W J, Lv H Y, Li J Y and Sun Y P 2016 Appl. Phys. Lett. 109

    [23]

    Giannopoulos G I 2017 Comp. Mater. Sci. 129 304

    [24]

    Zhou Y P and Jiang J W 2017 Sci. Rep. 7 45516

    [25]

    Pham V T and Fang T H 2020 Thin Solid Films 709 138197

    [26]

    Pham V T and Fang T H 2021 Sci. Rep. 11 12123

    [27]

    Sha Z D, Pei Q X, Zhou K, Dong Z L and Zhang Y W 2018 Extreme Mech. Lett. 19 39

    [28]

    Ayodhya D and Veerabhadram G 2020 Flatchem 19 100150

    [29]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444

    [30]

    Kaneti Y V, Benu D P, Xu X, Yuliarto B, Yamauchi Y and Golberg D 2022 Chem. Rev. 122 1000

    [31]

    Rubab A, Baig N, Sher M and Sohail M 2020 Chem. Eng. J. 401 126109

    [32]

    Duo Y H, Xie Z J, Wang L D, Abbasi N M, Yang T Q, Li Z H, Hu G X and Zhang H 2021 Coordin. Chem. Rev. 427 213549

    [33]

    Hoover W G 1985 Phys. Rev. A Gen. Phys. 31 1695

    [34]

    Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637

    [35]

    Erhart P and Albe K 2005 Phys. Rev. B 71 035211

    [36]

    Vodenitcharova T and Zhang L C 2004 Phys. Rev. B 69 115410

    [37]

    Tran T B T, Fang T H, Nguyen V T and Pham V T 2021 Comp. Mater. Sci. 197 110624

    [38]

    Subramaniyan A K and Sun C T 2008 Int. J. Solids Struct. 45 4340

    [39]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing:Science Press) p14(in Chinese)[赵亚溥2014纳米与介观力学(北京:科学出版社)第14页]

    [40]

    Min K and Aluru N R 2011 Appl. Phys. Lett. 98 013113

    [41]

    Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    [42]

    Zhou L, Wang Y and Cao G 2013 J. Phys. Condens. Matter 25 475303

    [43]

    Zhong H, Huang K, Yu G and Yuan S 2018 Phy. Rev. B 98 054104

    [44]

    Wang V and Geng W T 2017 J. Phys. Chem. C 121 10224

    [45]

    Peng B, Zhang H, Shao H, Ning Z, Xu Y, Ni G, Lu H, Zhang D W and Zhu H 2017 Mater. Res. Lett. 5 399

    [46]

    Zhou Y P and Jiang J W 2017 Sci. Rep. 7 45516

    [47]

    Cao G X and Gao H J 2019 Prog. Mater. Sci. 103 558

    [48]

    Zhou L X and Cao G X 2018 Adv. Mech. 48 201804(in Chinese)[周立新,曹国鑫.二维材料力学行为的压痕测试.力学进展, 2018, 48:201804]

    [49]

    Bui T X, Fang T H and Lee C I 2021 Nanotechnology 32 165704

    [50]

    Han T W, Li R, Zhang X Y and Scarpa F 2023 Mech. Mater. 180 104628

    [51]

    Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385

    [52]

    Tan X J, Wu J, Zhang K W, Peng X Y, Sun L Z and Zhong J X 2013 Appl. Phys. Lett. 102 071908

    [53]

    Xiang L, Ma S Y, Wang F and Zhang K W 2015 J. Phys. D. Appl. Phys. 48 395305

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. 碳化硅基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20232031
    [2] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20231735
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, doi: 10.7498/aps.71.20211753
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202239
    [5] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, doi: 10.7498/aps.70.20210764
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, doi: 10.7498/aps.69.20200781
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, doi: 10.7498/aps.68.20182125
    [9] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, doi: 10.7498/aps.67.20172424
    [10] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172193
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [12] 闻鹏, 陶钢, 任保祥, 裴政. 纳米多晶铜的超塑性变形机理的分子动力学探讨. 物理学报, doi: 10.7498/aps.64.126201
    [13] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.074401
    [14] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.016201
    [15] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [16] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.063103
    [17] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, doi: 10.7498/aps.62.076202
    [18] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, doi: 10.7498/aps.62.176103
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, doi: 10.7498/aps.60.056103
    [20] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, doi: 10.7498/aps.53.3637
计量
  • 文章访问数:  177
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-07

/

返回文章
返回