搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅功能化石墨烯热导率的分子动力学模拟

惠治鑫 贺鹏飞 戴瑛 吴艾辉

硅功能化石墨烯热导率的分子动力学模拟

惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉
PDF
导出引用
导出核心图
  • 采用Tersoff势函数与Lennard-Jones势函数,结合速度形式的Verlet 算法和Fourier定律,对单层和两层硅功能化石墨烯沿长度方向的导热性能进行了正向非平衡态分子动力学模拟. 通过模拟发现,硅原子的加入改变了石墨烯声子的模式、平均自由程和移动速度,使得单层硅功能化石墨烯模型的热导率随着硅原子数目的增加而急剧地减小. 在300 K至1000 K温度变化范围内,单层硅功能化石墨烯的热导率呈下降趋势,具有明显的温度效应. 对双层硅功能化石墨烯而言,少量的硅原子嵌入,起到了提高热导率的作用,但当硅原子数目达到一定数量后,材料的导热性能下降.
    • 基金项目: 中央高校基本科研业务费专项基金、上海市自然科学基金(批准号:11ZR1439100)、宁夏高等学校科学研究项目(批准号:宁教高[2012]336)和宁夏师范学院创新团队项目(批准号:ZY201211)资助的课题.
    [1]

    Barpanda P, Chotard J N, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Tarascon J M 2011 Angew. Chem. Int. Ed. 50 2526

    [2]

    Kim H, Seo M, Park M H, Cho J 2010 Angew. Chem. Int. Ed. 49 2146

    [3]

    Jafta C J, Ozoemena K I, Mathe M K, Roos W D 2012 Electrochim. Acta. 85 411

    [4]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Q 2012 Physics 41 02 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英2012 物理41 02]

    [5]

    Song L, Evans J W 1999 J. Electrochem. Soc. 146 869

    [6]

    Novoselov K, Geim K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Sci. 306 666

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Hong B H 2009 Nat. 457 706

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Grigorieva M K I, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nat. 438 201

    [11]

    Suzuki T, Hasegawa T, Mukai S R, Tamon H 2003 Carbon 41 1933

    [12]

    Paek S M, Yoo E, Honma I 2008 Nano Lett. 9 72

    [13]

    Wang G, Shen X, Yao J, Park J 2009 Carbon 47 2049

    [14]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [15]

    Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P 2011 Electrochim. Acta 56 2306

    [16]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011 Adv. Energy Mater. 1 1079

    [17]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [18]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Shi L 2010 Sci. 328 213

    [19]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [20]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese) [杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟2012 物理学报61 76501]

    [21]

    Yu W, Xie H, Li F, Zhao J, Zhang Z 2013 Appl. Phys. Lett. 103 141913

    [22]

    Kim J, Im H, Kim J M, Kim J 2012 J. Mater. Sci. 47 1418

    [23]

    Williams G, Seger B, Kamat P V 2008 ACS Nano 2 1487

    [24]

    Wang J, Wu W D, Shen J, Lu X P 1995 Physics 24 1 (in Chinese) [王珏, 吴卫东, 沈军, 陆献平1995 物理24 1]

    [25]

    Plimpton S 1995 J. Compu. Phys. 7 1

    [26]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [27]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [28]

    Tersoff J 1990 Phys. Rev. B 41 3248

    [29]

    Baskes M I 1999 Phys. Rev. Lett. 83 2592

    [30]

    Allen M P, Tildesley D J 1989 Computer simulation of liquids (London: Oxford university press) p233

    [31]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [32]

    Nosé S 1984 Mol. Phys. 52 255

    [33]

    Nosé S 1984 J. Chem. Phys. 81 511

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [35]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [36]

    Che J, Çağin T, Deng W, Goddard Ⅲ W A 2000 J. Chem. Phys. 113 6888

    [37]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [38]

    Ladd A J, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [39]

    Lee Y H, Biswas R, Soukoulis C M, Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. B 43 6573

    [40]

    Volz S G, Chen G 2000 Phys. Rev. B 61 2651

    [41]

    Oligschleger C, Schö n J C 999 Phys. Rev. B 59 4125

    [42]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707

    [43]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 613

    [44]

    Muller-Plathe, 1999 Phys. Rev. E 59 4894

    [45]

    Huang K, Han R Q 1998 Solid State Physics (Beijing: Beijing University Press) p143 (in Chinese) [黄昆, 韩汝琦1998 固体物理学(北京大学出版社) 第143 页]

    [46]

    Wei Z Y, Bi K D, ChenY F 2010 Journal of Southeast University (Narural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报(自然科学版) 40 306]

    [47]

    Ghosh S, Callizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [49]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Ruoff R S 2012 Nat. Mater. 11 203

  • [1]

    Barpanda P, Chotard J N, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Tarascon J M 2011 Angew. Chem. Int. Ed. 50 2526

    [2]

    Kim H, Seo M, Park M H, Cho J 2010 Angew. Chem. Int. Ed. 49 2146

    [3]

    Jafta C J, Ozoemena K I, Mathe M K, Roos W D 2012 Electrochim. Acta. 85 411

    [4]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Q 2012 Physics 41 02 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英2012 物理41 02]

    [5]

    Song L, Evans J W 1999 J. Electrochem. Soc. 146 869

    [6]

    Novoselov K, Geim K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Sci. 306 666

    [7]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [8]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Hong B H 2009 Nat. 457 706

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Grigorieva M K I, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nat. 438 201

    [11]

    Suzuki T, Hasegawa T, Mukai S R, Tamon H 2003 Carbon 41 1933

    [12]

    Paek S M, Yoo E, Honma I 2008 Nano Lett. 9 72

    [13]

    Wang G, Shen X, Yao J, Park J 2009 Carbon 47 2049

    [14]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [15]

    Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P 2011 Electrochim. Acta 56 2306

    [16]

    Zhao X, Hayner C M, Kung M C, Kung H H 2011 Adv. Energy Mater. 1 1079

    [17]

    Lee J K, Smith K B, Hayner C M, Kung H H 2010 Chem. Commun. 46 2025

    [18]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Shi L 2010 Sci. 328 213

    [19]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [20]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese) [杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟2012 物理学报61 76501]

    [21]

    Yu W, Xie H, Li F, Zhao J, Zhang Z 2013 Appl. Phys. Lett. 103 141913

    [22]

    Kim J, Im H, Kim J M, Kim J 2012 J. Mater. Sci. 47 1418

    [23]

    Williams G, Seger B, Kamat P V 2008 ACS Nano 2 1487

    [24]

    Wang J, Wu W D, Shen J, Lu X P 1995 Physics 24 1 (in Chinese) [王珏, 吴卫东, 沈军, 陆献平1995 物理24 1]

    [25]

    Plimpton S 1995 J. Compu. Phys. 7 1

    [26]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [27]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [28]

    Tersoff J 1990 Phys. Rev. B 41 3248

    [29]

    Baskes M I 1999 Phys. Rev. Lett. 83 2592

    [30]

    Allen M P, Tildesley D J 1989 Computer simulation of liquids (London: Oxford university press) p233

    [31]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [32]

    Nosé S 1984 Mol. Phys. 52 255

    [33]

    Nosé S 1984 J. Chem. Phys. 81 511

    [34]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [35]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [36]

    Che J, Çağin T, Deng W, Goddard Ⅲ W A 2000 J. Chem. Phys. 113 6888

    [37]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [38]

    Ladd A J, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [39]

    Lee Y H, Biswas R, Soukoulis C M, Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. B 43 6573

    [40]

    Volz S G, Chen G 2000 Phys. Rev. B 61 2651

    [41]

    Oligschleger C, Schö n J C 999 Phys. Rev. B 59 4125

    [42]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707

    [43]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 613

    [44]

    Muller-Plathe, 1999 Phys. Rev. E 59 4894

    [45]

    Huang K, Han R Q 1998 Solid State Physics (Beijing: Beijing University Press) p143 (in Chinese) [黄昆, 韩汝琦1998 固体物理学(北京大学出版社) 第143 页]

    [46]

    Wei Z Y, Bi K D, ChenY F 2010 Journal of Southeast University (Narural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞2010 东南大学学报(自然科学版) 40 306]

    [47]

    Ghosh S, Callizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [49]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Ruoff R S 2012 Nat. Mater. 11 203

  • [1] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [5] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [6] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [7] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [8] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [9] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1206
  • PDF下载量:  1490
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-07
  • 修回日期:  2013-12-17
  • 刊出日期:  2014-04-05

硅功能化石墨烯热导率的分子动力学模拟

  • 1. 同济大学, 航空航天与力学学院, 上海 200091;
  • 2. 宁夏师范学院, 物理与信息技术学院, 固原 756000
    基金项目: 

    中央高校基本科研业务费专项基金、上海市自然科学基金(批准号:11ZR1439100)、宁夏高等学校科学研究项目(批准号:宁教高[2012]336)和宁夏师范学院创新团队项目(批准号:ZY201211)资助的课题.

摘要: 采用Tersoff势函数与Lennard-Jones势函数,结合速度形式的Verlet 算法和Fourier定律,对单层和两层硅功能化石墨烯沿长度方向的导热性能进行了正向非平衡态分子动力学模拟. 通过模拟发现,硅原子的加入改变了石墨烯声子的模式、平均自由程和移动速度,使得单层硅功能化石墨烯模型的热导率随着硅原子数目的增加而急剧地减小. 在300 K至1000 K温度变化范围内,单层硅功能化石墨烯的热导率呈下降趋势,具有明显的温度效应. 对双层硅功能化石墨烯而言,少量的硅原子嵌入,起到了提高热导率的作用,但当硅原子数目达到一定数量后,材料的导热性能下降.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回