搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟

杨平 王晓亮 李培 王欢 张立强 谢方伟

氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟

杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟
PDF
导出引用
导出核心图
  • 石墨烯是近年纳米材料研究领域的一个热点,其独特的热学性质受到了广泛关注,为了实现对石墨烯传热特性的预期与可控,利用氮掺杂和空位缺陷对石墨烯进行改性.采用非平衡态分子动力学方法研究了扶手形石墨烯纳米带中氮掺杂浓度、位置及空位缺陷对热导率影响并从理论上分析了热导率变化原因.研究表明氮掺杂后石墨烯纳米带热导率急剧下降,氮浓度达到30%时,热导率下降了75.8%;氮掺杂位置从冷浴向热浴移动过程中,热导率先近似的呈线性下降后上升;同时发现单原子三角形氮掺杂结构比多原子平行氮掺杂结构对热传递抑制作用强;空位缺陷的存在降低了石墨烯纳米带热导率,空位缺陷位置从冷浴向热浴移动过程中,热导率先下降后上升,空位缺陷距离冷浴边缘长度相对于整个石墨烯纳米带长度的3/10时,热导率达到最小.石墨烯纳米带热导率降低的原因主要源于结构中声子平均自由程和声子移动速度随着氮掺杂浓度、位置及空位缺陷位置的改变发生了明显变化.这些结果有利于纳米尺度下对石墨烯传热过程进行调控及为新材料的合成应用提供了理论支持.
    • 基金项目: 国家自然科学基金(批准号:61076098和50875115),江苏省自然科学基金(批准号:BK2008227);江苏省研究生创新项目(批准号:CX10B_252Z)资助的课题.
    [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1]

    Novoselov K S, Geim A K 2004 Science 306 666

    [2]
    [3]

    Ghosh S, Callizo I 2008 Appl. Phys. Lett. 92 151911

    [4]

    Willian J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [5]
    [6]
    [7]

    Gao Z X, Dier Z, Xin-Gao G 2009 Appl. Phys. Lett. 95 163103

    [8]
    [9]

    Chen S K, Yue-Tzu Y, Chao-Kuang C 2011 Appl. Phys. Lett. 98 033107

    [10]
    [11]

    Shao Y Y, Sheng Z, Mark H E 2010 J. Mater. Chem. 20 7491

    [12]
    [13]

    Florian Muller-Plathe 1997 J. Chem. Phys. 106 6082

    [14]

    Ning W, Lanqing X, Hui-Qiong W 2011 Nanotechnology 22 105705

    [15]
    [16]

    Jiuning H, Xiulin R, Chen Y P 2009 Nano Lett. 7 2730

    [17]
    [18]
    [19]

    Jennifer R L, Hongliang Z 2007 J. Heat Transfer 129 705

    [20]
    [21]

    Donald W B, Olga A S 2002 J. Phys.: Condens. Matter 14 783

    [22]
    [23]

    Tersoff J 1989 Phys. Rew. B 39 5566

    [24]
    [25]

    Katsuyuki M, Craig F 2000 J. Appl. Phys. 38 L48

    [26]

    Shi L P, Xiong S J 2009 Phys. Lett. A 373 563

    [27]
    [28]
    [29]

    Nika D L, Pokatilov E P 2009 Phys. Rew. B 79 155413

    [30]

    Jiuning H, Stephen S, Ajit V 2010 Appl. Phys. Lett. 97 133107

    [31]
    [32]

    Dacheng W, Yunqi L, Yu W 2009 Nano Lett. 5 1752

    [33]
    [34]

    Xinran W 2009 Science 324 768

    [35]
    [36]
    [37]

    Ying W, Yuyan S 2010 ACS Nano 4 1790

    [38]
    [39]

    Nuo Y, Nianbei L, Lei W 2007 Phys. Rew. B 76 020301

    [40]
    [41]

    Alexis R, Abramson, Chang-Lin Tien 2002 J. Heat Transfer 124 963

    [42]

    Alexis R, Abramson, Chang-Lin T, Arun M 2002 J. Heat Transfer 124 963

    [43]
    [44]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [45]
    [46]
    [47]

    Chien S K, Yue-Tzu Y 2010 Phys. Lett. A 374 4885

    [48]
    [49]

    Chang C W, Okawa D 2006 Science 314 1121

    [50]
    [51]

    Gang Wu 2007 Phys. Rew. B 76 085424

    [52]

    Baowen Li, Lei W, Giulio C 2004 Phys. Rew. B 93 184301

    [53]
    [54]
    [55]

    Gang Wu, Baowen L 2008 J. Phys.: Condens. Matter 20 175211

  • [1] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [4] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [5] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [6] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [8] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [10] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2808
  • PDF下载量:  1322
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟

  • 1. 江苏大学机械工程学院, 镇江 212013
    基金项目: 

    国家自然科学基金(批准号:61076098和50875115),江苏省自然科学基金(批准号:BK2008227)

    江苏省研究生创新项目(批准号:CX10B_252Z)资助的课题.

摘要: 石墨烯是近年纳米材料研究领域的一个热点,其独特的热学性质受到了广泛关注,为了实现对石墨烯传热特性的预期与可控,利用氮掺杂和空位缺陷对石墨烯进行改性.采用非平衡态分子动力学方法研究了扶手形石墨烯纳米带中氮掺杂浓度、位置及空位缺陷对热导率影响并从理论上分析了热导率变化原因.研究表明氮掺杂后石墨烯纳米带热导率急剧下降,氮浓度达到30%时,热导率下降了75.8%;氮掺杂位置从冷浴向热浴移动过程中,热导率先近似的呈线性下降后上升;同时发现单原子三角形氮掺杂结构比多原子平行氮掺杂结构对热传递抑制作用强;空位缺陷的存在降低了石墨烯纳米带热导率,空位缺陷位置从冷浴向热浴移动过程中,热导率先下降后上升,空位缺陷距离冷浴边缘长度相对于整个石墨烯纳米带长度的3/10时,热导率达到最小.石墨烯纳米带热导率降低的原因主要源于结构中声子平均自由程和声子移动速度随着氮掺杂浓度、位置及空位缺陷位置的改变发生了明显变化.这些结果有利于纳米尺度下对石墨烯传热过程进行调控及为新材料的合成应用提供了理论支持.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回