搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

贺慧芳 陈志权

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

贺慧芳, 陈志权
PDF
导出引用
导出核心图
  • 利用水热法合成了Bi2Te3纳米粉末, 并在300500 ℃的温度范围内对其进行等离子烧结. X射线衍射测试表明制得的Bi2Te3粉末是单相的. 对于300500 ℃范围内烧结的样品, 扫描电子显微镜观察发现随着烧结温度的升高样品颗粒明显增大, 但是根据X射线衍射峰的宽度计算得到的样品晶粒大小并没有明显的变化. 正电子湮没寿命测试结果表明, 所有的样品中均存在空位型缺陷, 而这些缺陷很可能存在于晶界处. 正电子平均寿命随着烧结温度的升高而单调下降, 说明较高的烧结温度导致了空位型缺陷浓度的降低. 另外, 随着烧结温度从300 ℃升高到500 ℃, 样品的热导率从0.3 Wm-1K-1升高到了2.4 Wm-1K-1, 这表明在纳米Bi2Te3中, 空位型缺陷和热导率之间存在着密切的联系.
    • 基金项目: 国家自然科学基金(批准号: 11275143, 11305117)资助的课题.
    [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

  • [1]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [2]

    Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]

    [3]

    Huo F P, Wu R G, Xu G Y, Niu S T 2012 Acta Phys. Sin. 61 087202 (in Chinese) [霍凤萍, 吴荣归, 徐桂英, 牛四通 2012 物理学报 61 087202]

    [4]

    Ji X, Zhang B, Tritt T M, Kolis J W, Kumbhar A 2007 J. Electron. Mater. 36 721

    [5]

    Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665

    [6]

    Callaway J, von Baeyer H C 1960 Phys. Rev. 120 1149

    [7]

    Klemens P G 1955 Proc. Phys. Soc. A 68 1113

    [8]

    Abeles B 1963 Phys. Rev. 131 1906

    [9]

    Pei Y Z, Morelli D T 2009 Appl. Phys. Lett. 94 122112

    [10]

    Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101

    [11]

    Yu C, Scullin M L, Huijben M, Ramesh R, Majumdar A 2008 Appl. Phys. Lett. 92 191911

    [12]

    Wang Y, Li F, Xu L X, Sui Y, Wang X J, Su W H, Liu X Y 2011 Inorg. Chem. 50 4412

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [14]

    Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G, Ren Z F 2011 Phys. Rev. B 83 115201

    [15]

    Wiedigen S, Kramer T, Feuchter M, Knorr I, Nee N, Hoffmann J, Kamlah M, Volkert C A, Jooss C 2012 Appl. Phys. Lett. 100 061904

    [16]

    Levander A X, Tong T, Yu K M, Suh J, Fu D, Zhang R, Lu H, Schaff W J, Dubon O, Walukiewicz W, Cahill D G, Wu J 2011 Appl. Phys. Lett. 98 012108

    [17]

    Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F, Zhu H M 2011 J. Am. Chem. Soc. 133 20112

    [18]

    Kato A, Yagi T, Fukusako N 2009 J. Phys.: Condens. Matter 21 205801

    [19]

    Park C H, Kim Y S 2010 Phys. Rev. B 81 085206

    [20]

    Hashibon A, Elsässer C 2011 Phys. Rev. B 84 144117

    [21]

    Alam H, Ramakrishna S 2013 Nano Energy 2 190

    [22]

    Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, Kuk Y, Park C, Kim S J, Hyeon T 2012 Nano Lett. 12 640

    [23]

    Fu J P, Song S Y, Zhang X G, Cao F, Zhou L, Li X Y, Zhang H J 2012 Crys. Eng. Comm. 14 2159

    [24]

    Wang X Z, Yang Y M, Zhu L L 2011 J. Appl. Phys. 110 024312

    [25]

    Termentzidis K, Pokropivny A, Woda M, Xiong S Y, Chumakov Y, Cortona, Volz S 2012 J. Phys.: Conference Series 395 012114

    [26]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) pp18-19 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北科学技术出版社)第18–19页]

    [27]

    Dutta S, Chattopadhyay S, Jana D 2006 J. Appl. Phys. 100 114328

    [28]

    Chakrabarti M, Dutta S, Chattapadhyay S, Sarkar A, Sanyal D, Chakrabarti A 2004 Nanotechnology 15 1792

    [29]

    Tuomisto F, Ranki V, Saarinen K, Look D C 2003 Phys. Rev. Lett. 91 205502

    [30]

    Dutta S, Chakrabarti M, Chattopadhyay S, Jana D, Sanyal D, Sarkar A 2005 J. Appl. Phys. 98 053513

    [31]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal, Chakrabarti A 2005 J. Mater. Sci. 40 5265

    [32]

    Ni H L, Zhu T J, Zhao X B 2005 Mater. Sci. Eng. B 117 119

    [33]

    Takashiri M, Tanaka S, Hagino H, Miyazaki K 2012 J. Appl. Phys. 112 084315

    [34]

    Kirkegaard P, Pederson N J, Eldrup M 1989 Riso Report M 2740, Risφ National Laboratory, DK-4000 Roskilde, Denmark

    [35]

    Zheng X J, Zhu L L, Zhou Y H, Zhang Q J 2005 Appl. Phys. Lett. 87 242101

    [36]

    Yoon S, Kwon O J, Ahn S, Kim J Y, Koo H, Bae S H, Cho J Y, Kim J S, Park C 2013 J. Electron. Mater. 42 3390

  • [1] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [3] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [4] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [5] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [7] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [8] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [9] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [10] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [11] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [12] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [13] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [14] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
  • 引用本文:
    Citation:
计量
  • 文章访问数:  538
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-06-14
  • 刊出日期:  2015-10-20

用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响

  • 1. 武汉大学物理学院, 湖北核固体物理重点实验室, 武汉 430072
    基金项目: 

    国家自然科学基金(批准号: 11275143, 11305117)资助的课题.

摘要: 利用水热法合成了Bi2Te3纳米粉末, 并在300500 ℃的温度范围内对其进行等离子烧结. X射线衍射测试表明制得的Bi2Te3粉末是单相的. 对于300500 ℃范围内烧结的样品, 扫描电子显微镜观察发现随着烧结温度的升高样品颗粒明显增大, 但是根据X射线衍射峰的宽度计算得到的样品晶粒大小并没有明显的变化. 正电子湮没寿命测试结果表明, 所有的样品中均存在空位型缺陷, 而这些缺陷很可能存在于晶界处. 正电子平均寿命随着烧结温度的升高而单调下降, 说明较高的烧结温度导致了空位型缺陷浓度的降低. 另外, 随着烧结温度从300 ℃升高到500 ℃, 样品的热导率从0.3 Wm-1K-1升高到了2.4 Wm-1K-1, 这表明在纳米Bi2Te3中, 空位型缺陷和热导率之间存在着密切的联系.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回