搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究

陈东阁 唐新桂 贾振华 伍君博 熊惠芳

引用本文:
Citation:

Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究

陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳

Dielectric spectroscopy of Al2O3-Y2O3-ZrO2 ternary composite ceramics

Chen Dong-Ge, Tang Xin-Gui, Jia Zhen-Hua, Wu Jun-Bo, Xiong Hui-Fang
PDF
导出引用
  • 采用传统的固相反应法,在14001500 ℃下烧结,制备得到Al2O3-Y2O3-ZrO2三相复合陶瓷.样品的结构、形貌和电性能分别用X射线衍射(XRD)、扫描电子显微镜(SEM)及介电谱表征.XRD表明此三相复合体系无其他杂相,加入Y2O3及ZrO2后使得Al2O3成瓷温度降低;SEM表明此体系晶粒直径为200500 nm,并且样品随烧结温度的升高而变得更加致密,晶界更加清晰;介电损耗谱中出现峰值弛豫现象,根据Cole-Cole复阻抗谱得出其为非德拜弛豫.
    Al2O3-Y2O3-ZrO2 ternary composite ceramics are synthesized via the traditional solid state reaction method and sintered at 14001500 ℃. The phase structure, the microstructure and the electrical properties of these samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and dielectric spectra. There are not any other impurity phases in this ternary system supported by XRD patterns, and additions of Y2O3 and ZrO2 into Al2O3 make contributions to the lower calcining heat. SEM indicates that the grain sizes of these samples are about 200500 nm. Furthermore, the densities are improved and the grain boundaries are clearer for the samples sintered at higher temperatures. Relaxation peaks are observed in the dielectric loss plots and the relaxation is of non-Debye type according to Cole-Cole complex impedance spectrum.
    • 基金项目: 国家自然科学基金(批准号:10774030)、广东省科技计划(批准号:2010B090400141)和广州市科技计划(批准号:2010Y1-C221)资助的课题.
    [1]

    Tian M B, Liang T X 1995 Semicond. Inform. 32 7 (in Chinese) [田民波、梁彤翔 1995 半导体情报 32 7]

    [2]
    [3]

    Lee J H, Yoshikawa A, Fukuda T, Waku Y 2001 J. Cryst. Growth 231 115

    [4]
    [5]

    Song K X, Wu S Y, Chen X M 2007 Mater. Lett. 61 3357

    [6]
    [7]

    Calderon-Moreno J M, Yoshimura M 2004 Mater. Sci. Eng. A 375-377 1246

    [8]
    [9]

    Larrea A, Fuente G F, Merino R I, Orera V M 2002 J. Eur. Ceram. Soc. 22 191

    [10]

    Pea J I, Larsson M, Merino R I, Francisco I, Orera V M, Lorce J L, Pastor J Y, Martn A, Segurado J 2006 J. Eur. Ceram. Soc. 26 3113

    [11]
    [12]

    Oelgardt C, Anderson J, Heinrich J G, Messing G L 2010 J. Eur. Ceram. Soc. 30 649

    [13]
    [14]

    Araki S, Yoshimura M 2006 J. Eur. Ceram. Soc. 26 3295

    [15]
    [16]
    [17]

    Jin L L, Zhou G H, Shimai S Z, Zhang J, Wang S W 2010 J. Eur. Ceram. Soc. 30 2139

    [18]
    [19]

    Kume S, Yasuoka M, Omura N, Watari K 2007 Ceram. Int. 33 269

    [20]

    Wang C, Peng C Q, Wang R C, Yu K, Li C 2007 Chin. J. Nonferr. Met. 17 1229 (in Chinese) [王 超、彭超群、王日初、余 琨、李 超 2007 中国有色金属学报 17 1229]

    [21]
    [22]

    Rossi G, Burke J E 1973 J. Am. Ceram. Soc. 56 654

    [23]
    [24]
    [25]

    Sato E, Carry C 1996 J. Am. Ceram. Soc. 79 2156

    [26]
    [27]

    Lou B Z 2008 Shandong Ceram. 31 6 (in Chinese) [娄本浊 2008 山东陶瓷 31 6]

    [28]

    Hench L L, West J K 1990 Principles of Electronic Ceramics (New York: John Wiley Sons) p189

    [29]
    [30]
    [31]

    Josyulu O S, Sobhanadri J 1980 Phys. Stat. Sol. A 59 323

    [32]

    Iwauchi K 1971 Jpn. J. Appl. Phys. 10 1520

    [33]
    [34]

    Verma A, Thakur O P, Prakash C, Goel T C, Mendiratta R G 2005 Mater. Sci. Eng. B 116 1

    [35]
    [36]

    Ferrarelli M C, Sinclair D C, West A R, Dabkowska H A, Luke G M 2009 J. Mater. Chem. 19 5916

    [37]
    [38]

    Sarkar S, Jana P K, Chaudhuri B K 2008 Appl. Phys. Lett. 92 022905

    [39]
    [40]

    Zhang Z J, Xu F M, Tan Y 2009 Mater. Rev. 23 56 (in Chinese) [张志军、许富民、谭 毅 2009 材料导报 23 56]

    [41]
    [42]
    [43]

    Costescu R M, Cahill D G, Fabreguette F H, Sechrist Z A, George S M 2004 Science 303 989

  • [1]

    Tian M B, Liang T X 1995 Semicond. Inform. 32 7 (in Chinese) [田民波、梁彤翔 1995 半导体情报 32 7]

    [2]
    [3]

    Lee J H, Yoshikawa A, Fukuda T, Waku Y 2001 J. Cryst. Growth 231 115

    [4]
    [5]

    Song K X, Wu S Y, Chen X M 2007 Mater. Lett. 61 3357

    [6]
    [7]

    Calderon-Moreno J M, Yoshimura M 2004 Mater. Sci. Eng. A 375-377 1246

    [8]
    [9]

    Larrea A, Fuente G F, Merino R I, Orera V M 2002 J. Eur. Ceram. Soc. 22 191

    [10]

    Pea J I, Larsson M, Merino R I, Francisco I, Orera V M, Lorce J L, Pastor J Y, Martn A, Segurado J 2006 J. Eur. Ceram. Soc. 26 3113

    [11]
    [12]

    Oelgardt C, Anderson J, Heinrich J G, Messing G L 2010 J. Eur. Ceram. Soc. 30 649

    [13]
    [14]

    Araki S, Yoshimura M 2006 J. Eur. Ceram. Soc. 26 3295

    [15]
    [16]
    [17]

    Jin L L, Zhou G H, Shimai S Z, Zhang J, Wang S W 2010 J. Eur. Ceram. Soc. 30 2139

    [18]
    [19]

    Kume S, Yasuoka M, Omura N, Watari K 2007 Ceram. Int. 33 269

    [20]

    Wang C, Peng C Q, Wang R C, Yu K, Li C 2007 Chin. J. Nonferr. Met. 17 1229 (in Chinese) [王 超、彭超群、王日初、余 琨、李 超 2007 中国有色金属学报 17 1229]

    [21]
    [22]

    Rossi G, Burke J E 1973 J. Am. Ceram. Soc. 56 654

    [23]
    [24]
    [25]

    Sato E, Carry C 1996 J. Am. Ceram. Soc. 79 2156

    [26]
    [27]

    Lou B Z 2008 Shandong Ceram. 31 6 (in Chinese) [娄本浊 2008 山东陶瓷 31 6]

    [28]

    Hench L L, West J K 1990 Principles of Electronic Ceramics (New York: John Wiley Sons) p189

    [29]
    [30]
    [31]

    Josyulu O S, Sobhanadri J 1980 Phys. Stat. Sol. A 59 323

    [32]

    Iwauchi K 1971 Jpn. J. Appl. Phys. 10 1520

    [33]
    [34]

    Verma A, Thakur O P, Prakash C, Goel T C, Mendiratta R G 2005 Mater. Sci. Eng. B 116 1

    [35]
    [36]

    Ferrarelli M C, Sinclair D C, West A R, Dabkowska H A, Luke G M 2009 J. Mater. Chem. 19 5916

    [37]
    [38]

    Sarkar S, Jana P K, Chaudhuri B K 2008 Appl. Phys. Lett. 92 022905

    [39]
    [40]

    Zhang Z J, Xu F M, Tan Y 2009 Mater. Rev. 23 56 (in Chinese) [张志军、许富民、谭 毅 2009 材料导报 23 56]

    [41]
    [42]
    [43]

    Costescu R M, Cahill D G, Fabreguette F H, Sechrist Z A, George S M 2004 Science 303 989

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [3] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [5] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究. 物理学报, 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [6] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [7] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [8] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [10] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [11] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [12] 刘鹏, 张丹. La诱导(Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3反铁电介电弛豫研究. 物理学报, 2011, 60(1): 017701. doi: 10.7498/aps.60.017701
    [13] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [14] 张崇辉, 徐卓, 高俊杰, 王斌科. 等静压下0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3陶瓷的介电性能研究. 物理学报, 2009, 58(9): 6500-6505. doi: 10.7498/aps.58.6500
    [15] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [16] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [17] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [18] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究. 物理学报, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 董正高, 沈明荣, 徐闰, 甘肇强, 葛水兵. 氧气氛低温退火Pt/Ba0.8Sr0.2TiO3Pt引起的低频介电弛豫效应. 物理学报, 2002, 51(12): 2896-2900. doi: 10.7498/aps.51.2896
计量
  • 文章访问数:  5829
  • PDF下载量:  570
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-14
  • 修回日期:  2011-09-02
  • 刊出日期:  2011-06-05

/

返回文章
返回