搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米管力学性能的分子动力学模拟

苏锦芳 宋海洋 安敏荣

金纳米管力学性能的分子动力学模拟

苏锦芳, 宋海洋, 安敏荣
PDF
导出引用
导出核心图
  • 采用分子动力学模拟方法, 研究了金纳米管沿不同晶向拉伸与压缩载荷下的力学性能, 并分析了金纳米管的半径对其力学行为的影响. 在模拟计算中, 采用镶嵌原子势描述金原子之间的相互作用. 模拟结果表明, 在拉伸及压缩过程中, 不同晶向的金纳米管力学性能相差较大, 在拉伸和压缩载荷下金纳米管向的屈服强度最大; 在三个晶向, , 的金纳米管中, 晶向的金纳米管其屈服强度和杨氏模量都远远小于其他晶向. 研究结果还发现, 当纳米管的半径小于3.0 nm时, 金纳米管的屈服强度没有大的变化, 而当半径大于3.0 nm后, 随着半径的增大, 其屈服强度明显降低.
    • 基金项目: 国家自然科学基金(批准号: 10902083)、教育部新世纪优秀人才支持计划(批准号: NCET-12-1046)和陕西省青年科技新星计划项目(批准号: 2012KJXX-39) 资助的课题.
    [1]

    Liu Y L, Gui L J, Jin S 2012 Chin. Phys. B 21 096102

    [2]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 许甫宁 2012 物理学报 61 066101]

    [3]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [4]

    McFadden S X, Mishra R S, Valiev R Z, Zhilyaev A P, Mukherjee A K 1999 Nature 398 684

    [5]

    Zhang X, Wang H, Scattergood R O, Narayan J, Koch C C, Sergueeva A V, Mukherjee A K 2002 Appl. Phys. Lett. 81 823

    [6]

    Wang Y M, Chen M W, Zhou F H, Ma E 2002 Nature 419 912

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Wang J M, Hu W Y, Li X F, Xiao S F, Deng H Q 2010 Comput. Mater. Sci. 50 373

    [9]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010物理学报 59 8836]

    [10]

    Wang G H, Pan H, Ke F J, Xia M F, Bai Y L 2008 Chin. Phys. B 17 259

    [11]

    Huang D, Zhang Q, Qiao P Z 2011 Comput. Mater. Sci. 50 903

    [12]

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese) [汪志刚, 吴亮, 张杨, 文玉华2011 物理学报 60 096105]

    [13]

    Pastor-Abia L, Caturla M J, SanFabian E, Chiappe G, Louis E 2011 Phys. Rev. B 83 165441

    [14]

    An M R, Song H Y, Su J F 2012 Chin. Phys. B 21 106202

    [15]

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201 (in Chinese) [宋海洋, 李玉龙 2012 物理学报 61 226201]

    [16]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [17]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L 2012 Chin. Phys. B 21 026103

    [18]

    Liu Y H, Gao Y J, Wang F Y, Zhu T M, Zhao J W 2011 Acta Phys. Chim. Sin. 27 1341 (in Chinese) [刘云红, 高亚军, 王奋英, 朱铁民, 赵健伟 2011 物理化学学报 27 1341]

    [19]

    Gleiter H 1995 Nanostruct. Mater. 6 3

    [20]

    Qin Kun, Yang L M, Hu S S 2008 Chin. Phys. Lett. 25 2581

    [21]

    Deng C, Sansoz F 2010 Phys. Rev. B 81 155430

    [22]

    Siegel R W 1996 Mater. Sci. Forum. 235-238 851

    [23]

    Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77

    [24]

    Koch C C, Malow T R 1999 Mater. Sci. Forum. 312-314 565

    [25]

    Honeycutt R W 1970 Methods Comput. Phys. 9 136

    [26]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [27]

    Song H Y, Zha X W 2009 J. Phys. D: Appl. Phys. 42 225402

    [28]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 682

    [29]

    Yang G M, Xu G L, Li Y T, Xu F, Chang Y B, Yang Y H 2010 Mater. Rev. 24 81 (in Chinese) [杨光明, 徐国良, 李月婷, 徐凤, 常艳兵, 杨云慧2010材料导报 24 81]

    [30]

    Yang J H, Li B, Zhang Q J, Chen L 2012 Phys. Lett. A 376 2707

    [31]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2012 Appl. Phys. Lett. 101 093109

    [32]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [33]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [34]

    Coura P Z, Legoas S B, Moreira A S, Sato F, Rodrigues V, Dantas S O, Ugarte D, Galvao D S 2004 Nano Lett. 4 1187

    [35]

    Horstermeyer M F, Baskes M I 1999 J. Eng. Mater. Technol. 121 114

  • [1]

    Liu Y L, Gui L J, Jin S 2012 Chin. Phys. B 21 096102

    [2]

    Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese) [周国荣, 滕新营, 王艳, 耿浩然, 许甫宁 2012 物理学报 61 066101]

    [3]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [4]

    McFadden S X, Mishra R S, Valiev R Z, Zhilyaev A P, Mukherjee A K 1999 Nature 398 684

    [5]

    Zhang X, Wang H, Scattergood R O, Narayan J, Koch C C, Sergueeva A V, Mukherjee A K 2002 Appl. Phys. Lett. 81 823

    [6]

    Wang Y M, Chen M W, Zhou F H, Ma E 2002 Nature 419 912

    [7]

    Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾明, 赖延清, 田忠良, 刘业翔 2009 物理学报 58 1139]

    [8]

    Wang J M, Hu W Y, Li X F, Xiao S F, Deng H Q 2010 Comput. Mater. Sci. 50 373

    [9]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010物理学报 59 8836]

    [10]

    Wang G H, Pan H, Ke F J, Xia M F, Bai Y L 2008 Chin. Phys. B 17 259

    [11]

    Huang D, Zhang Q, Qiao P Z 2011 Comput. Mater. Sci. 50 903

    [12]

    Wang Z G, Wu L, Zhang Y, Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese) [汪志刚, 吴亮, 张杨, 文玉华2011 物理学报 60 096105]

    [13]

    Pastor-Abia L, Caturla M J, SanFabian E, Chiappe G, Louis E 2011 Phys. Rev. B 83 165441

    [14]

    An M R, Song H Y, Su J F 2012 Chin. Phys. B 21 106202

    [15]

    Song H Y, Li Y L 2012 Acta Phys. Sin. 61 226201 (in Chinese) [宋海洋, 李玉龙 2012 物理学报 61 226201]

    [16]

    Song H Y, Li Y L 2012 J. Appl. Phys. 112 054322

    [17]

    Ao B Y, Xia J X, Chen P H, Hu W Y, Wang X L 2012 Chin. Phys. B 21 026103

    [18]

    Liu Y H, Gao Y J, Wang F Y, Zhu T M, Zhao J W 2011 Acta Phys. Chim. Sin. 27 1341 (in Chinese) [刘云红, 高亚军, 王奋英, 朱铁民, 赵健伟 2011 物理化学学报 27 1341]

    [19]

    Gleiter H 1995 Nanostruct. Mater. 6 3

    [20]

    Qin Kun, Yang L M, Hu S S 2008 Chin. Phys. Lett. 25 2581

    [21]

    Deng C, Sansoz F 2010 Phys. Rev. B 81 155430

    [22]

    Siegel R W 1996 Mater. Sci. Forum. 235-238 851

    [23]

    Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77

    [24]

    Koch C C, Malow T R 1999 Mater. Sci. Forum. 312-314 565

    [25]

    Honeycutt R W 1970 Methods Comput. Phys. 9 136

    [26]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [27]

    Song H Y, Zha X W 2009 J. Phys. D: Appl. Phys. 42 225402

    [28]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 682

    [29]

    Yang G M, Xu G L, Li Y T, Xu F, Chang Y B, Yang Y H 2010 Mater. Rev. 24 81 (in Chinese) [杨光明, 徐国良, 李月婷, 徐凤, 常艳兵, 杨云慧2010材料导报 24 81]

    [30]

    Yang J H, Li B, Zhang Q J, Chen L 2012 Phys. Lett. A 376 2707

    [31]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2012 Appl. Phys. Lett. 101 093109

    [32]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012

    [33]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279

    [34]

    Coura P Z, Legoas S B, Moreira A S, Sato F, Rodrigues V, Dantas S O, Ugarte D, Galvao D S 2004 Nano Lett. 4 1187

    [35]

    Horstermeyer M F, Baskes M I 1999 J. Eng. Mater. Technol. 121 114

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1917
  • PDF下载量:  891
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-26
  • 修回日期:  2012-10-31
  • 刊出日期:  2013-03-05

金纳米管力学性能的分子动力学模拟

  • 1. 西安邮电大学理学院, 西安 710121
    基金项目: 

    国家自然科学基金(批准号: 10902083)、教育部新世纪优秀人才支持计划(批准号: NCET-12-1046)和陕西省青年科技新星计划项目(批准号: 2012KJXX-39) 资助的课题.

摘要: 采用分子动力学模拟方法, 研究了金纳米管沿不同晶向拉伸与压缩载荷下的力学性能, 并分析了金纳米管的半径对其力学行为的影响. 在模拟计算中, 采用镶嵌原子势描述金原子之间的相互作用. 模拟结果表明, 在拉伸及压缩过程中, 不同晶向的金纳米管力学性能相差较大, 在拉伸和压缩载荷下金纳米管向的屈服强度最大; 在三个晶向, , 的金纳米管中, 晶向的金纳米管其屈服强度和杨氏模量都远远小于其他晶向. 研究结果还发现, 当纳米管的半径小于3.0 nm时, 金纳米管的屈服强度没有大的变化, 而当半径大于3.0 nm后, 随着半径的增大, 其屈服强度明显降低.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回