Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on the mechanical properties and deformation mechanisms of 2D borophene under different loadings

Han Tong-Wei Li Xuan-Zheng Zhao Ze-Ruo Gu Ye-Tong Ma Chuan Zhang Xiao-Yan

Citation:

Investigation on the mechanical properties and deformation mechanisms of 2D borophene under different loadings

Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan
PDF
Get Citation
  • Two dimensional borophene has attracted widespread research interest in condensed matter physics and materials science because of its rich physical and chemical properties. However, the mechanical properties and deformation mechanisms of borophene under different loadings are still unclear and not thoroughly investigated. In this work, the tensile, shear, and nanoindentation failure processes of borophene are simulated via molecular dynamics method to obtain the key mechanical parameters of borophene. The mechanical response and deformation mechanism of borophene under different loadings are analyzed from the variation of B-B bond length with the strain/indentation depth. The results show that the tensile mechanical properties of borophene exhibit significant anisotropic characteristics, with the Young's modulus and strength along the armchair direction being much higher than those along the zigzag direction. However, the anisotropy of the shear mechanical properties of borophene is not significant. The reason for this phenomenon can be attributed to the different contributions of the strong B-B σ bonds and weak multi-center bonds in borophene when it is stretched in different directions. It is also found that borophene exhibits different mechanical response under spherical and cylindrical indentation. The force at failure of the borophene under spherical indentation is much lower than the value under cylindrical one, and the intrinsic mechanical parameters of borophene under spherical indentation cannot be estimated accurately because of the anisotropic characteristics of borophene. However, under cylindrical indentation borophene exhibits similar anisotropic characteristics as under tension, and the mechanical parameters such as Young's modulus can be measured accurately that are consistent with those obtained under tension. In addition, the effects of the borophene indentation model and spherical/cylindrical indenter size, the loading rate and temperature on the mechanical parameters of borophene are also studied systematically. The results indicate that the Young's moduli of borophene from spherical indentation are highly estimated when a/R <15 but not sensitive when a/R >15, while the results from cylindrical indentation are hardly affected by the values of L/R and W/L. The Young's modulus of borophene slightly decreases with increasing temperature, while the loading rate has almost no effect on the value of Young's modulus of borophene. These findings are expected to provide important guidelines for the practical applications of borophene based micro/nano electromechanical systems.Two dimensional borophene has attracted widespread research interest in condensed matter physics and materials science because of its rich physical and chemical properties. However, the mechanical properties and deformation mechanisms of borophene under different loadings are still unclear and not thoroughly investigated. In this work, the tensile, shear, and nanoindentation failure processes of borophene are simulated via molecular dynamics method to obtain the key mechanical parameters of borophene. The mechanical response and deformation mechanism of borophene under different loadings are analyzed from the variation of B-B bond length with the strain/indentation depth. The results show that the tensile mechanical properties of borophene exhibit significant anisotropic characteristics, with the Young's modulus and strength along the armchair direction being much higher than those along the zigzag direction. However, the anisotropy of the shear mechanical properties of borophene is not significant. The reason for this phenomenon can be attributed to the different contributions of the strong B-B σ bonds and weak multi-center bonds in borophene when it is stretched in different directions. It is also found that borophene exhibits different mechanical response under spherical and cylindrical indentation. The force at failure of the borophene under spherical indentation is much lower than the value under cylindrical one, and the intrinsic mechanical parameters of borophene under spherical indentation cannot be estimated accurately because of the anisotropic characteristics of borophene. However, under cylindrical indentation borophene exhibits similar anisotropic characteristics as under tension, and the mechanical parameters such as Young's modulus can be measured accurately that are consistent with those obtained under tension. In addition, the effects of the borophene indentation model and spherical/cylindrical indenter size, the loading rate and temperature on the mechanical parameters of borophene are also studied systematically. The results indicate that the Young's moduli of borophene from spherical indentation are highly estimated when a/R<15 but not sensitive when a/R>15, while the results from cylindrical indentation are hardly affected by the values of L/R and W/L. The Young's modulus of borophene slightly decreases with increasing temperature, while the loading rate has almost no effect on the value of Young's modulus of borophene. These findings are expected to provide important guidelines for the practical applications of borophene based micro/nano electromechanical systems.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    [2]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS nano 7 4414

    [3]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [4]

    Bertolazzi S, Brivio J and Kis A 2011 ACS nano 5 9703

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS nano 8 4033

    [6]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 564

    [7]

    Lau K C, Pati R, Pandey R and Pineda A C 2006 Chem. Phys. Lett. 418 549

    [8]

    Kunstmann J and Quandt A 2006 Phys. Rev. B 74 035413

    [9]

    Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501

    [10]

    Yang X, Ding Y and Ni J 2008 Phys. Rev. B 77 041402(R)

    [11]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513

    [12]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563

    [13]

    Li W H, Chen L and Wu K H 2022 Acta Phys. Sin. 71 108104(in Chinese)[李文辉,陈岚,吴克辉.硼烯的实验制备.物理学报, 2022, 71:108104]

    [14]

    Zhang Z H, Yang Y, Penev E S and Yakobson B I 2017 Adv. Funct. Mater. 27 1605059

    [15]

    Kong L J, Liu L R, Chen L, Zhong Q, Cheng P, Li H, Zhang Z H and Wu K H 2019 Nanoscale 11 15605

    [16]

    Zhong H X, Huang K X, Yu G D and Yuan S J 2018 Phys. Rev. B 98 054104

    [17]

    Peng B, Zhang H, Shao H, Xu Y, Zhang R and Zhu H 2016 J. Mater. Chem. C 4 3592

    [18]

    Mortazavi B, Rahaman O, Dianat A and Rabczuk T 2016 Phys. Chem. Chem. Phys. 18 27405

    [19]

    Wang Z, Lu T Y, Wang H Q, Feng Y P and Zheng J C 2016 Phys. Chem. Chem. Phys. 18 31424

    [20]

    Wang H F, Li Q F, Gao Y, Miao F, Zhou X F and Wan X G 2016 New J. Phys. 18 073016

    [21]

    Faghihnasiri M, Jafari H, Ramazani A, Shabani M, Estalaki S M and Larson R G 2019 J. Appl. Phys. 125 145107

    [22]

    Xiao R C, Shao D F, Lu W J, Lv H Y, Li J Y and Sun Y P 2016 Appl. Phys. Lett. 109

    [23]

    Giannopoulos G I 2017 Comp. Mater. Sci. 129 304

    [24]

    Zhou Y P and Jiang J W 2017 Sci. Rep. 7 45516

    [25]

    Pham V T and Fang T H 2020 Thin Solid Films 709 138197

    [26]

    Pham V T and Fang T H 2021 Sci. Rep. 11 12123

    [27]

    Sha Z D, Pei Q X, Zhou K, Dong Z L and Zhang Y W 2018 Extreme Mech. Lett. 19 39

    [28]

    Ayodhya D and Veerabhadram G 2020 Flatchem 19 100150

    [29]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444

    [30]

    Kaneti Y V, Benu D P, Xu X, Yuliarto B, Yamauchi Y and Golberg D 2022 Chem. Rev. 122 1000

    [31]

    Rubab A, Baig N, Sher M and Sohail M 2020 Chem. Eng. J. 401 126109

    [32]

    Duo Y H, Xie Z J, Wang L D, Abbasi N M, Yang T Q, Li Z H, Hu G X and Zhang H 2021 Coordin. Chem. Rev. 427 213549

    [33]

    Hoover W G 1985 Phys. Rev. A Gen. Phys. 31 1695

    [34]

    Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637

    [35]

    Erhart P and Albe K 2005 Phys. Rev. B 71 035211

    [36]

    Vodenitcharova T and Zhang L C 2004 Phys. Rev. B 69 115410

    [37]

    Tran T B T, Fang T H, Nguyen V T and Pham V T 2021 Comp. Mater. Sci. 197 110624

    [38]

    Subramaniyan A K and Sun C T 2008 Int. J. Solids Struct. 45 4340

    [39]

    Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing:Science Press) p14(in Chinese)[赵亚溥2014纳米与介观力学(北京:科学出版社)第14页]

    [40]

    Min K and Aluru N R 2011 Appl. Phys. Lett. 98 013113

    [41]

    Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    [42]

    Zhou L, Wang Y and Cao G 2013 J. Phys. Condens. Matter 25 475303

    [43]

    Zhong H, Huang K, Yu G and Yuan S 2018 Phy. Rev. B 98 054104

    [44]

    Wang V and Geng W T 2017 J. Phys. Chem. C 121 10224

    [45]

    Peng B, Zhang H, Shao H, Ning Z, Xu Y, Ni G, Lu H, Zhang D W and Zhu H 2017 Mater. Res. Lett. 5 399

    [46]

    Zhou Y P and Jiang J W 2017 Sci. Rep. 7 45516

    [47]

    Cao G X and Gao H J 2019 Prog. Mater. Sci. 103 558

    [48]

    Zhou L X and Cao G X 2018 Adv. Mech. 48 201804(in Chinese)[周立新,曹国鑫.二维材料力学行为的压痕测试.力学进展, 2018, 48:201804]

    [49]

    Bui T X, Fang T H and Lee C I 2021 Nanotechnology 32 165704

    [50]

    Han T W, Li R, Zhang X Y and Scarpa F 2023 Mech. Mater. 180 104628

    [51]

    Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385

    [52]

    Tan X J, Wu J, Zhang K W, Peng X Y, Sun L Z and Zhong J X 2013 Appl. Phys. Lett. 102 071908

    [53]

    Xiang L, Ma S Y, Wang F and Zhang K W 2015 J. Phys. D. Appl. Phys. 48 395305

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Mechanical Strengthening Property of SiC Material Covered with Multilayer Graphene From Molecular Dynamic Simulation. Acta Physica Sinica, doi: 10.7498/aps.73.20232031
    [2] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, doi: 10.7498/aps.73.20231735
    [3] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20211753
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, doi: 10.7498/aps.70.20202239
    [5] Han Tong-Wei, Li Ren, Cao Shu-Min, Zhang Xiao-Yan. Investigation of effects of functionalization on mechanical properties of penta-graphene. Acta Physica Sinica, doi: 10.7498/aps.70.20210764
    [6] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.69.20200781
    [7] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, doi: 10.7498/aps.69.20200836
    [8] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, doi: 10.7498/aps.68.20182125
    [9] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, doi: 10.7498/aps.67.20172424
    [10] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.67.20172193
    [11] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.65.176201
    [12] Wen Peng, Tao Gang, Ren Bao-Xiang, Pei Zheng. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.64.126201
    [13] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, doi: 10.7498/aps.63.074401
    [14] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, doi: 10.7498/aps.63.016201
    [15] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.63.086102
    [16] Su Jin-Fang, Song Hai-Yang, An Min-Rong. Molecular dynamics simulation on mechanical properties of gold nanotubes. Acta Physica Sinica, doi: 10.7498/aps.62.063103
    [17] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, doi: 10.7498/aps.62.076202
    [18] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, doi: 10.7498/aps.62.176103
    [19] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.60.056103
    [20] Xu Zhou, Wang Xiu-Xi, Liang Hai-Yi, Wu Heng-An. Numerical simulation and analysis on the mechanical behaviors of the single-crystalline and poly-crystalline nano-Cu film. Acta Physica Sinica, doi: 10.7498/aps.53.3637
Metrics
  • Abstract views:  176
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  07 April 2024

/

返回文章
返回