Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing

Liu Ying-Gang Che Fu-Long Jia Zhen-An Fu Hai-Wei Wang Hong-Liang Shao Min

Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing

Liu Ying-Gang, Che Fu-Long, Jia Zhen-An, Fu Hai-Wei, Wang Hong-Liang, Shao Min
PDF
Get Citation
  • Using the fiber Bragg grating equation and the functional relation of the fundamental effective mode refractive index (RI), the mathematical model of the wavelength shift and the relational function of wavelength sensitivity are established, when the reflected wavelength of the micro/nanofiber Bragg grating (MNFBG) changes with ambient RI and the fiber radius. The theoretical relationship demonstrates that the variation of MNFBG reflected wavelengths is dependent on the change of effective RI with fiber radius and ambient RI. Meanwhile, we also study the variation of effective RI and its sensitivity in detail. The results show that the effective RI nonlinearly decreases with fiber-core radius and ambient refractive index decreasing, and its sensitivity increases as the ambient refractive index increases, and the sensitivity, linearity and the linear response range increase with the decrease of the fiber radius. For a fiber radius of 0.5 μm, by simulating the curves of the effective index versus ambient RI in the index ranges of 1.20-1.30 and 1.33-1.43 respectively, the values of wavelength sensitivity of 477.33 nm/RIU and 856.30 nm/RIU and the values of high linearity of 99.2% and 99.7% are obtained, which not only verifies the analysis conclusions and the measurement program for RI sensing with MNFBG, but also supplies references for the RI sensor design, optimization and the application.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60727004), and the Research Foundation from Ministry of Education of China (Grant No. 708087).
    [1]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [2]

    Tong L M, Pan X Y 2007 Physics 36 626 (in Chinese) [童利民, 潘欣云 2007物理 36 626]

    [3]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011物理学报 60 104221]

    [4]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [5]

    Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025

    [6]

    Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A 2005 Appl. Phys. Lett. 86 151122

    [7]

    Fang X, Liao C R, Wang D N 2010 Opt. Lett. 35 1007

    [8]

    Iadicicco A, Campopiano S, Cutolo A, Giordano M, Cusano A 2005 IEEE Photon. Technol. Lett. 17 1250

    [9]

    Zhang Y, Lin B, Tjin S C, Zhang H, Wang G H, Shum P, Zhang X L 2010 Opt. Express 18 26345

    [10]

    Chiang K S, Liu Y Q, Ng M N, Dong X Y 2000 Electron Lett. 36 966

    [11]

    Ran Y, Jin L, Sun L P, Li J, Guan B O 2012 Opt. Lett. 37 2649

    [12]

    Lee S M, Jeong M Y, Saini S S 2012 J. Lightwave Technol. 30 1025

    [13]

    Ran Y, Tan Y N, Sun L P, Gao S, Li J, Jin L, Guan B O 2011 Opt. Express 19 18577

    [14]

    Li B, Jiang L, Wang S M, Tsai H L, Xiao H 2011 Opt. Laser Technol. 43 1420

    [15]

    Dan G, Stephen J M, Huimin D, Christopher W S 2006 IEEE Photon. Technol. Lett. 18 160

    [16]

    Xu B, Li Y, Dong X Y, Jin S Z, Zhang Z X 2012 Chin. Phys. Lett. 29 094203

    [17]

    Liao Y B 2000 Fiber Optics (Beijing: Tsinghua University Press) p200 (in Chinese) [廖延彪 2000 光纤光学(北京: 清华大学出版社) 第200页]

    [18]

    Zhou H Q, Sui C H 2011 J. Zhejiang Univ. Technol. 39 228 (in Chinese) [周寒青, 隋成华 2011 浙江工业大学学报 39 228]

  • [1]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [2]

    Tong L M, Pan X Y 2007 Physics 36 626 (in Chinese) [童利民, 潘欣云 2007物理 36 626]

    [3]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011物理学报 60 104221]

    [4]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [5]

    Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025

    [6]

    Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A 2005 Appl. Phys. Lett. 86 151122

    [7]

    Fang X, Liao C R, Wang D N 2010 Opt. Lett. 35 1007

    [8]

    Iadicicco A, Campopiano S, Cutolo A, Giordano M, Cusano A 2005 IEEE Photon. Technol. Lett. 17 1250

    [9]

    Zhang Y, Lin B, Tjin S C, Zhang H, Wang G H, Shum P, Zhang X L 2010 Opt. Express 18 26345

    [10]

    Chiang K S, Liu Y Q, Ng M N, Dong X Y 2000 Electron Lett. 36 966

    [11]

    Ran Y, Jin L, Sun L P, Li J, Guan B O 2012 Opt. Lett. 37 2649

    [12]

    Lee S M, Jeong M Y, Saini S S 2012 J. Lightwave Technol. 30 1025

    [13]

    Ran Y, Tan Y N, Sun L P, Gao S, Li J, Jin L, Guan B O 2011 Opt. Express 19 18577

    [14]

    Li B, Jiang L, Wang S M, Tsai H L, Xiao H 2011 Opt. Laser Technol. 43 1420

    [15]

    Dan G, Stephen J M, Huimin D, Christopher W S 2006 IEEE Photon. Technol. Lett. 18 160

    [16]

    Xu B, Li Y, Dong X Y, Jin S Z, Zhang Z X 2012 Chin. Phys. Lett. 29 094203

    [17]

    Liao Y B 2000 Fiber Optics (Beijing: Tsinghua University Press) p200 (in Chinese) [廖延彪 2000 光纤光学(北京: 清华大学出版社) 第200页]

    [18]

    Zhou H Q, Sui C H 2011 J. Zhejiang Univ. Technol. 39 228 (in Chinese) [周寒青, 隋成华 2011 浙江工业大学学报 39 228]

  • [1] Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming. Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber. Acta Physica Sinica, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [2] Li Jie, Li Meng-Meng, Sun Li-Peng, Fan Peng-Cheng, Ran Yang, Jin Long, Guan Bai-Ou. Polarization-maintaining microfiber-based evanescent-wave sensors. Acta Physica Sinica, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [3] Li Hui-Dong, Fu Hai-Wei, Shao Min, Zhao Na, Qiao Xue-Guang, Liu Ying-Gang, Li Yan, Yan Xu. In-fiber Mach-Zehnder interferometer based on fiber core etched air-bubble and core diameter mismatch for liquid refractive index sensing. Acta Physica Sinica, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [4] Liu Chao, Pei Li, Li Zhuo-Xuan, Ning Ti-Gang, Gao Song, Kang Ze-Xin, Sun Jiang. Characteristics of the fiber Bragg grating based all-fiber acousto-optic modulator. Acta Physica Sinica, 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [5] Ren Wen-Hua, Wang Yan-Hua, Feng Su-Chun, Tan Zhong-Wei, Liu Yan, Jian Shui-Sheng. A study on the interval between longitudinal modes of Fabry-Perot cavity composed of fiber Bragg gratings. Acta Physica Sinica, 2008, 57(12): 7758-7764. doi: 10.7498/aps.57.7758
    [6] Lü Chang-Gui, Cui Yi-Ping, Wang Zhu-Yuan, Yun Bin-Feng. A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating. Acta Physica Sinica, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [7] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] Hou Jian-Ping, Zhao Chen-Yang, Yang Nan, Hao Jian-Ping, Zhao Jian-Lin. Measurement of end-face reflection property of micro-nano fibers. Acta Physica Sinica, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [9] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [10] Liu Yan, Zheng Kai, Tan Zhong-Wei, Li Bin, Chen Yong, Ning Ti-Gang, Jian Shui-Sheng. Good performance of chirped fiber Bragg gratings obtained by asymmetrically one-side exposure apodization. Acta Physica Sinica, 2006, 55(11): 5859-5865. doi: 10.7498/aps.55.5859
  • Citation:
Metrics
  • Abstract views:  854
  • PDF Downloads:  839
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2012
  • Accepted Date:  12 December 2012
  • Published Online:  20 May 2013

Investigation on the characteristics of micro/nanofiber Bragg grating for refractive index sensing

  • 1. Shaanxi Key Laboratory of Photoelectric Sensing Logging, Xi’an Shiyou University, Xi’an 710065, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 60727004), and the Research Foundation from Ministry of Education of China (Grant No. 708087).

Abstract: Using the fiber Bragg grating equation and the functional relation of the fundamental effective mode refractive index (RI), the mathematical model of the wavelength shift and the relational function of wavelength sensitivity are established, when the reflected wavelength of the micro/nanofiber Bragg grating (MNFBG) changes with ambient RI and the fiber radius. The theoretical relationship demonstrates that the variation of MNFBG reflected wavelengths is dependent on the change of effective RI with fiber radius and ambient RI. Meanwhile, we also study the variation of effective RI and its sensitivity in detail. The results show that the effective RI nonlinearly decreases with fiber-core radius and ambient refractive index decreasing, and its sensitivity increases as the ambient refractive index increases, and the sensitivity, linearity and the linear response range increase with the decrease of the fiber radius. For a fiber radius of 0.5 μm, by simulating the curves of the effective index versus ambient RI in the index ranges of 1.20-1.30 and 1.33-1.43 respectively, the values of wavelength sensitivity of 477.33 nm/RIU and 856.30 nm/RIU and the values of high linearity of 99.2% and 99.7% are obtained, which not only verifies the analysis conclusions and the measurement program for RI sensing with MNFBG, but also supplies references for the RI sensor design, optimization and the application.

Reference (18)

Catalog

    /

    返回文章
    返回