搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用

吴婉玲 王向珂 虞华康 李志远

引用本文:
Citation:

基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用

吴婉玲, 王向珂, 虞华康, 李志远

Sub-wavelength focused light field and light capture application based on micro-nano fiber two-mode interference

Wu Wan-Ling, Wang Xiang-Ke, Yu Hua-Kang, Li Zhi-Yuan
PDF
HTML
导出引用
  • 本文报道了一种基于微纳光纤中双模式干涉的亚波长聚焦方法. 利用微纳光纤中两种特定导模在微纳光纤端面处的干涉效应, 在微纳光纤端面处获得了单焦点或多焦点的聚焦光场, 并可通过调节两个模式之间的相位差、功率比分别实现聚焦光场的焦深调谐、焦斑相对强度调谐, 从而达到对纳米颗粒可调谐、选择性的捕获. 根据干涉聚焦光场中不同焦点处所对应的捕获刚度和势阱深度的不同, 可以对不同大小的纳米颗粒进行分类. 这种微型化全光纤的亚波长聚焦方法, 将可应用于操纵纳米颗粒、超分辨率光学成像和纳米光刻等领域.
    The ability to focus light on a subwavelength scale is essential in modern photonics. Optical microfiber-based sub-wavelength focusing will allow a miniaturized, flexible and versatile tool to be superior for many applications such as biomedical imaging and optomechanics. When a single mode exits from the microfiber endface, it will experience significant diffraction into the free space. This situation can be changed by combining two-mode interference with its dependence on the distributions of E -field amplitude and phase. Herein we report a novel approach to sub-wavelength focusing based on the two-mode interference from an optical microfiber. By utilizing unique distributions of electric field amplitude and phase of two interacting optical modes, interference field patterns with a single focus (via a two-mode set of HE11 and HE12) or multiple foci (via a two-mode set of HE11 and HE31) can be obtained. Then, it is proved that the constructed foci are helpful for the adjustable and selective trapping of nanoparticles. Circular polarization of optical mode is utilized in order to improve the angular symmetry of sub-wavelength focusing patterns other than linear polarized optical modes. Our simulation results show that the smallest focal spot can be produced from the EH11 and HE12 mode interference, with a full width at half-maximum (FWHM) value of ≈ 348 nm (0.65λ). Such a subwavelength focusing field is applied to the optical trapping of an 85 nm-diameter polystyrene nanosphere. Further calculation reveals that the stable trapping can be fulfilled with axial and transverse trap stiffness of 11.48 pN/(μm·W) and 64.98 pN/(μm·W) (via two-mode set of HE11 and HE12), as well as axial and transverse potential well of 101 kBT/W and 641 kBT/W via two-mode interference of HE11 and HE12. These values demonstrate the great improvement over conventional tapered fibers. Further investigations show that different foci (via a two-mode set of HE11 and HE31) exhibit distinct trap stiffness and potential wells, justifying the potential for nanoparticle size sorting. Based on the flexible all-fiber device, this subwavelength focusing strategy by two-mode interference may find promising applications in optical manipulation, superresolution optical imaging, data storage and nanolithography.
  • 图 1  数值模型的示意图, 光学导波模式沿着SiO2微纳光纤传输, 并在出射空间形成聚焦光场, 模式中采用笛卡尔坐标系

    Fig. 1.  Schematic of the numerical model, guided modes propagate along a silica microfiber and interfere in transmission space, here the Cartesian coordinate is used.

    图 2  直径为1.5 μm的SiO2微纳光纤中的导模 (a)—(c)电场强度的模值(|E|); (d)—(f)电场强度主要分量的实部(Re(Ex)); (a), (d)准x线偏振HE11模; (b), (e) EH11偶模; (c), (f) HE31偶模. 电场强度的单位为V/m; 图中白色圆圈代表微纳光纤的边界, 比例尺为1 μm

    Fig. 2.  Mode profiles of guided modes in a silica microfiber with a diameter of 1.5 μm: (a)–(c) Electric field |E|; (d)–(f) phase distributions Re(Ex); (a), (d) x-HE11; (b), (e) even-EH11; (c), (f) even-HE31 modes. The unit of |E| is V/m, the white circles indicate microfiber walls, the scale bars are 1 μm.

    图 3  模式组HE11 + EH11的聚焦光场及对直径85 nm的PS颗粒的捕获强度 (a) xz平面; (b) yz平面; (c) 焦平面上的电场强度的模值分布(| E |), 单位为V/m; (d) 捕获平面上的势能密度分布(三维图, 单位为kBT/W)和横向光力分布(底部的二维图, 单位为pN/W). 图(c), (d)中比例尺为0.5 μm

    Fig. 3.  E-field and trapping strength for 85 nm polystyrene (PS) particle under the two-mode set of x-HE11 and even-EH11: (a) Electric fields (|E|) in xz plane, (b) the central cross-section in yz plane; (c) the focal plane, the unit is V/m; (d) potential energy densities (3 D profile) in trapping planes, with a unit of kBT/W. The images below show the transverse force exerted on the nanoparticle in trapping planes: the color scale indicates the magnitude of the force and the arrows indicate its direction. Scale bars in panels (c) and (d) are 0.5 μm.

    图 4  模式组HE11 + EH11在不同相位差下的聚焦光场和颗粒捕获效果 (a) 聚焦光场的最大场强和工作距离; (b) 聚焦光场的半高宽尺寸; (c) 相位差为–140°时颗粒沿光纤轴移动时的光力和势能; (d) 相位差为–90°时颗粒沿光纤轴移动时的光力和势能

    Fig. 4.  Optical trapping effect of two-mode HE11 + EH11 under various phase differences: (a) Maximum E-field and working distance of the focusing light field; (b) the half width dimension of the focused light field; (c) the optical force and potential energy when particles move along the fiber axis with a phase difference of –140 °; (d) the optical force and potential energy of particles moving along the fiber axis with a phase difference of –90 °.

    图 5  模式组HE11 + HE31的聚焦光场及对直径85 nm的PS颗粒的捕获强度 (a) xz平面, (b) yz平面, (c) 焦平面上的电场强度的模值分布(| E |), 单位为V/m; (d) 捕获平面上的势能密度分布(三维图)和横向光力分布(底部的二维图), 其中势能单位为kBT/W、光力单位为pN/W. 图(c), (d)中比例尺为0.5 μm

    Fig. 5.  E-field and trapping strength for 85 nm polystyrene (PS) particle under the two-mode set of x-HE11 and even-HE31: (a) Electric fields (|E|) in xz plane; (b) electric fields (|E|) in yz plane; (c) electric fields (|E|) in the focal plane, the unit is V/m; (d) potential energy densities (3 D profile) in trapping planes, with a unit of kBT/W. The images below show the transverse force exerted on the nanoparticle in trapping planes, the color scale indicates the magnitude of the force and the arrows indicate its direction. The scale bars in panels (c), (d) are 0.5 μm.

    图 6  模式组EH11 + HE31的聚焦光场及对直径85 nm的PS颗粒的捕获强度 (a) xz平面; (b) yz平面; (c)焦平面上的电场强度的模值分布(| E |), 单位为V/m; (d) 捕获平面上的势能密度分布(三维图)和横向光力分布(底部的二维图), 其中势能单位为kBT/W、光力单位为pN/W.图(c), (d)中比例尺为0.5 μm

    Fig. 6.  E-field and trapping strength for 85 nm polystyrene (PS) particle under the two-mode set of x-EH11 and even-HE31: (a) Electric fields (|E|) in xz plane; (b) electric fields (|E|) in yz plane; (c) electric fields (|E|) in the focal plane, the unit is V/m; (d) potential energy densities (3 D profile) in trapping planes, with a unit of kBT/W, the images below show the transverse force exerted on the nanoparticle in trapping planes, the color scale indicates the magnitude of the force and the arrows indicate its direction. Scale bars in panels (c) and (d) are 0.5 μm.

    图 7  模式组HE11 + HE12的聚焦光场及对直径85 nm的PS颗粒的捕获强度 (a) 准x线偏振HE12模的电场强度的模值分布(| E |), 单位为V/m; (b) 准x线偏振HE12模的电场强度主要分量的实部(Re(Ex)); (c) xz平面聚焦光场的电场强度的模值分布; (d) 焦平面聚焦光场的电场强度的模值分布; (e) 纳米颗粒在捕获平面上的横向光力, 单位为pN/W; (f) 纳米颗粒在捕获平面上的势能密度分布(三维图)和横向光力分布(底部的二维图), 单位为kBT/W.图中比例尺为0.5 μm

    Fig. 7.  Sub-wavelength focusing based on two-mode interference of x-polarized HE11 and HE12 and potential energy (a unit of kBT/W) for an 85 nm PS particle: (a) E-field (i.e., |E|) distributions of x-HE12 mode, the unit is V/m; (b) Re(Ex) distributions of x-HE12 mode; (c) simulated interference field in the central cross-section xz plane; (d) electric fields (|E|) in the focal plane; (e) transverse force (a unit of pN/W) and (f) potential energy (a unit of kBT/W). The scale bars are 0.5 μm.

    图 8  圆偏振模式组HE11 + EH11的聚焦光场及对直径85 nm的PS颗粒的捕获强度 (a)聚焦光场在xz平面的电场强度的模值分布(|E|); (b) 焦平面上的电场强度的模值分布(|E|), 单位为V/m; (c) 纳米颗粒在捕获平面上的横向光力, 单位为pN/W; (d) 纳米颗粒在捕获平面上的势能密度分布(三维图)和横向光力分布(底部的二维图), 单位为kBT/W, 图中比例尺为0.5

    Fig. 8.  Trapping strength of the sub-wavelength focusing under circularly polarized mode group HE11 + EH11 and capture intensity of PS particles with a diameter of 85 nm: (a) E-field distribution of the focused light field in the xz plane; (b) electric fields (|E|) in the focal plane, the unit is V/m; (c) transverse force distributions in the trapping plane (with a unit of pN/W); (d) the trapping potential (3 D profile and 2 D projection) in the trapping plane, with a unit of kBT/W. The scale bars are 0.5 μm.

    表 1  基于微纳光纤双模式干涉的聚焦光场

    Table 1.  Sub-wavelength focusing of light by the two-mode-interference from an optical microfiber.

    模式1的分布特点 模式2的分布特点 聚焦光斑的分布特点
    模式组合 |E| Re(Ex) |E| Re(Ex) |E| 最小半高宽 工作距离/μm
    HE11+EH11 类高斯 类高斯 类8字型圆环 略相连的四瓣区域 椭圆形 0.83λ 0.38
    HE11+HE31 类高斯 类高斯 空心圆环 独立的四瓣区域 双焦点 0.97λ 0.67
    EH11+HE31 单一圆环 略相连的四瓣区域 空心圆环 独立的四瓣区域 四焦点 0.78λ 0.10
    HE11+HE12 类高斯 类高斯 同心双环 同心双环 类高斯 1.21λ 0.35
    EH11+ HE12 单一圆环 略相连的四瓣区域 同心双环 同心双环 三明治形 0.65λ 0.3
    圆偏振态 HE11+EH11 类高斯 1.77λ 0.40
    下载: 导出CSV

    表 2  基于微纳光纤双模式干涉的聚焦光场在光捕获方面的应用a)b)

    Table 2.  Optical traps created by sub-wavelength focusing fields based on two-mode interference from an optical microfiber a)b)

    模式组合 颗粒横向位置(x, y)/μm 平衡位置/μm Ux/y/(kBT·W–1) Uz/(kBT·W–1) κx/y/(pN·μm–1·W–1) κz/(pN·μm–1·W–1)
    HE11+EH11 (0, 0) 0.58 159 80 2.22/24.66 3.57
    HE11+HE31 (±0.41, 0) 0.77 99 25 11.53 4.0
    EH11+HE31 (0, ±0.5) 0.34 179 26 14.64 1.34
    HE11+HE12 (0, 0) 0.43 500 101 64.98 11.48
    EH11+ HE12 (0, 0) 0.30 288 38 88.07 10.11
    圆偏振态 HE11+EH11 (0, 0) 0.43 185 79 17.6 4.1
    a) 聚苯乙烯小球, 直径85 nm;
    b) Ux/yUz分别为横向和纵向的势阱深度; κx/yκz分别为横向和纵向的捕获刚度.
    下载: 导出CSV

    表 3  基于光纤的亚波长聚焦光场比较

    Table 3.  Comparisons of sub-wavelength focusing fields by optical fibers.

    结构光波长/nm半高宽/nm工作离距/μm文献
    微球透镜800678 (0.85λ)8[1]
    中空微管道671435 (0.65λ)1.47[21]
    普通单模光纤超透镜690280 (0.41λ)18[28]
    普通单模光纤超透镜660360 (0.54λ)50[35]
    光纤锥808840 (1.04λ)3[25]
    光纤锥微透镜808208 (0.26λ)0.48[25]
    普通多模光纤微透镜980350 (0.36λ)15[34]
    本工作532348 (0.65λ)0.4
    下载: 导出CSV

    表 4  亚波长聚焦光场在光捕获应用方面的比较a)b)

    Table 4.  Comparisons of optical traps created by sub-wavelength focusing fields a)b).

    结构 尺寸/nm Ux/y/kBT/W Uz/(kBT·W–1) κx/y/(pN·μm–1·W–1) κz/(pN·μm–1·W–1) 文献
    光纤锥 85 150 70 22 4 [25]
    光纤锥微透镜 85 500 240 310 60 [25]
    普通单模光纤超透镜 2000 90 8 [35]
    普通多模光纤微透镜 200 4.6×103 6.3×103 720 250 [34]
    本工作 85 641 101 64.98 11.48
    a)文献[35]捕获的物体为SiO2球, 其余文献的捕获颗粒为聚苯乙烯小球;
    b) Ux/yUz分别为横向和纵向的势阱深度; κx/yκz分别为横向和纵向的捕获刚度.
    下载: 导出CSV
  • [1]

    Lin Z Y, Liu K, Cao T, Hong M H 2023 OEA 6 230029Google Scholar

    [2]

    Stoian R, Colombier J P 2020 Nanophotonics 9 4665Google Scholar

    [3]

    Li X P, Cao Y Y, Tian N, Fu L, Gu M 2015 Optica 2 567Google Scholar

    [4]

    Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V 2004 Phys. Rev. Lett. 93 037401Google Scholar

    [5]

    Yang H, Trouillon R, Huszka G, Gijs M A M 2016 Nano Lett. 16 4862Google Scholar

    [6]

    Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat. Nanotechnol. 9 295Google Scholar

    [7]

    Li Y C, Liu X S, Li B J 2019 Light Sci. Appl. 8 61Google Scholar

    [8]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [9]

    Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403Google Scholar

    [10]

    Lee S Y, Kim K, Kim S J, Park H, Kim K Y, Lee B 2015 Optica 2 6Google Scholar

    [11]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

    [13]

    Garcı́a-Vidal F J, Martı́n-Moreno L, Lezec H J, Ebbesen T W 2003 Appl. Phys. Lett. 83 4500Google Scholar

    [14]

    虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar

    [15]

    Huang F M, Zheludev N, Chen Y, Javier Garcia de Abajo F 2007 Appl. Phys. Lett. 90 091119Google Scholar

    [16]

    Wei P K, Chang W L, Lee K L, Lin E H 2009 Opt. Lett. 34 1867Google Scholar

    [17]

    Wang T T, Wang X, Kuang C F, Hao X, Liu X 2010 Appl. Phys. Lett. 97 231105Google Scholar

    [18]

    Wang X, Fu J, Liu X, Tong L M 2009 J. Opt. Soc. Am. A 26 1827Google Scholar

    [19]

    Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I 2007 Nat. Photonics 1 723Google Scholar

    [20]

    Zhang Y, Liu Z H, Yang J, Yuan L B 2012 Opt. Commun. 285 4068Google Scholar

    [21]

    Fu J, Dong H T, Fang W 2010 Appl. Phys. Lett. 97 41114Google Scholar

    [22]

    Gong Y, Ye A Y, Wu Y, Rao Y J, Yao Y, Xiao S 2013 Opt. Express 21 16181Google Scholar

    [23]

    Zhang Y X, Zhou Y, Tang X Y, Wang Z, Zhang Y, Liu Z H, Zhang J Z, Yang J, Yuan L B 2021 Opt. Lett. 46 3017Google Scholar

    [24]

    Li Y C, Xin H B, Liu X, Zhang Y, Lei H X, Li B J 2016 ACS Nano 10 5800Google Scholar

    [25]

    Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J 2016 Light Sci. Appl. 5 e16176Google Scholar

    [26]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 31108Google Scholar

    [27]

    Huang H, Li Q, Fu J, Wu J, Lin F, Wu X K 2015 Nanoscale 7 16504Google Scholar

    [28]

    Yuan G H, Rogers E T, Zheludev N I 2017 Light Sci. Appl. 6 e17036Google Scholar

    [29]

    Yu H K, Fang W, Gu F X, Qiu M, Yang Z Y, Tong L M 2011 Phys. Rev. A 83 053830Google Scholar

    [30]

    Wang S S, Fu J, Qiu M, Huang K J, Ma Z, Tong L M 2008 Opt. Express 16 8887Google Scholar

    [31]

    Mansuripur M, Zakharian A R 2009 Phys. Rev. A 80 023823Google Scholar

    [32]

    Girard C, Dereux A, Martin O J F 1994 Phys. Rev. B 49 13872Google Scholar

    [33]

    Tong L M, Lou J, Mazur E 2004 Opt. Express 12 1025Google Scholar

    [34]

    Tang X Y, Zhang Y, Su W J, Zhang Y X, Liu Z H, Yang X H, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 5165Google Scholar

    [35]

    Plidschun M, Ren H, Kim J, Förster R, Maier S A, Schmidt M A 2021 Light Sci. Appl. 10 57Google Scholar

    [36]

    Pradhan P, Sengupta D, Wang L, Tremblay C, LaRochelle S, Ung B 2017 Sci. Rep. 7 1552Google Scholar

    [37]

    Zhang W D, Wei K Y, Huang L G, Mao D, Jiang B Q, Gao F, Zhang G Q, Mei T, Zhao J L 2016 Opt. Express 24 19278Google Scholar

    [38]

    Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G 2014 Opt. Express 22 11610Google Scholar

    [39]

    肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明 2015 物理学报 64 204207Google Scholar

    Xiao Y L, Liu Y G, Wang Z, Liu X Q, Luo M M 2015 Acta Phys. Sin. 64 204207Google Scholar

    [40]

    Li Z, Kim M H, Wang C, Han Z, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Lončar M, Yu N 2017 Nat. Nanotechnol. 12 675Google Scholar

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, doi: 10.7498/aps.73.20240171
    [2] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, doi: 10.7498/aps.72.20230673
    [3] 韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚. 基于双极化编码超表面生成的双模式轨道角动量. 物理学报, doi: 10.7498/aps.72.20230457
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, doi: 10.7498/aps.71.20221518
    [5] 李慧嘉, 黄照词, 王文璇, 夏承遗. 新型双模式加权机制及其对网络计算的影响. 物理学报, doi: 10.7498/aps.70.20210453
    [6] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [7] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, doi: 10.7498/aps.67.20180307
    [8] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, doi: 10.7498/aps.66.074209
    [9] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, doi: 10.7498/aps.65.010701
    [10] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, doi: 10.7498/aps.65.094206
    [11] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, doi: 10.7498/aps.65.137301
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, doi: 10.7498/aps.64.194201
    [13] 仲义, 许吉, 陆云清, 王敏娟, 王瑾. 基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦. 物理学报, doi: 10.7498/aps.63.237801
    [14] 胡晓堃, 李江, 李贤, 陈耘辉, 栗岩锋, 柴路, 王清月. 太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究. 物理学报, doi: 10.7498/aps.62.060701
    [15] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, doi: 10.7498/aps.62.104218
    [16] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, doi: 10.7498/aps.62.144216
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, doi: 10.7498/aps.60.044205
    [18] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, doi: 10.7498/aps.60.104221
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, doi: 10.7498/aps.59.958
    [20] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, doi: 10.7498/aps.53.1782
计量
  • 文章访问数:  169
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-27
  • 修回日期:  2024-03-03
  • 上网日期:  2024-03-30

/

返回文章
返回