搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质填充型二次柱面等离激元透镜的亚波长聚焦

胡昌宝 许吉 丁剑平

介质填充型二次柱面等离激元透镜的亚波长聚焦

胡昌宝, 许吉, 丁剑平
PDF
导出引用
导出核心图
  • 本文提出了一种亚波长聚焦的表面等离激元透镜, 该透镜由二氧化硅填充金膜纳米狭缝阵列组成, 金膜的出射表面为二次柱面. 表面等离激元在狭缝入口处激发并沿狭缝传输, 在狭缝出口转变为带有一定相位延迟的自由空间传播的光波. 通过对透镜结构参数的控制, 可以调节来自各狭缝的光波间的相对相位, 使它们在设定的焦点处进行相长干涉, 从而实现聚焦效果. 本文用时域有限差分法数值计算了二次柱面等离激元透镜的聚焦特性. 数值模拟结果表明, 所设计的孔径为2 m的透镜, 能够实现微米级焦距和焦深、且焦斑半高宽低至0.4倍波长的亚 波长聚焦. 该表面等离激元透镜结构简单紧凑、尺寸小, 有利于光子器件的集成, 在集成光学、光学微操纵、超分辩率成像、光存储、生化传感等相关领域有潜在的应用价值.
      通信作者: 丁剑平, jpding@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474156, 11404170, 11274158)资助的课题.
    [1]

    Kawata S 2001 Near-Field Optics and Surface Plasmon Polaritons (Vol.81) (Berlin Heidelberg: Springer) p19

    [2]

    Juan M L, Righini M Quidant R 2011 Nat Photonics 5 349

    [3]

    MAIER S A 2006 Plasmonics:Fundamentals and Applications (New York: Springer) p21

    [4]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express 20 17734

    [5]

    Takeda1 M, Kimura1 N, Inoue T, Aizawa K 2015 Jpn. J. Appl. Phys. 54 09MG02

    [6]

    Zhao X N, Zhang X P, Cao P F, Cheng L, Duan J X, Cheng L B, Kong W J, Yang L L 2013 Optik 124 6740

    [7]

    Lan L, Jiang W, Ma Y 2013 Appl. Phys.Lett. 102 231119

    [8]

    Venugopalan P, Zhang Q M, Li X P, Kuipers L, Gu M 2014 Opt. Lett. 39 5744

    [9]

    Wang J, Zhou W 2010 Plasmonics 5 325

    [10]

    Guo K, Liu J L, Liu S T 2014 Opt Commun 331 124

    [11]

    Liu Y, Fu Y Q, Zhou X L 2010 Plasmonics 5 117

    [12]

    Hao F H, Wang R Wang J 2010 Plasmonics 5 45

    [13]

    Okuda S, Kimur N, Takeda M, Inoue T, Aizawa K 2014 Opt. Rev. 21 560

    [14]

    Liu Y X, Xu Hua, Stief F, Zhitenev N, Yu M 2011 Opt. Express 19 20233

    [15]

    Wu G, Chen J J Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [16]

    Duan X F Zhou G R, Huang Y Q, Shang Y F, Ren X M 2015 Opt. Express 23 2639

    [17]

    Cheng L, Cao P F, Li Y, Kong W J, Zhao X N, Zhang X P 2012 Plasmonics 7 175

    [18]

    Sun Z J, Kim H K 2004 Appl. Phys. Lett. 85 642

    [19]

    Yu Y T, Zappe H 2011 Opt. Express 19 9434

    [20]

    Xu T, Wang C T, Du C L, Luo X G 2008 Opt. Express 16 4753

    [21]

    Johnson R B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Palik E D 1985 Handbook of optical constants of solids (New York: Academic Press) pp723-729

    [23]

    Barnes W L 2006 J. Opt. A-Pure Appl. Opt. 8 S87

    [24]

    Chen J N, Xu Q F, Wang G 2011 Chinese. Phys. B 20 114211

    [25]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [26]

    Li Y, Wolf E 1981 Opt. Commun. 39 211

    [27]

    Feng D 2014 J. Opt. Soc. Am. A 31 2071

    [28]

    Shi H F, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 093111

  • [1]

    Kawata S 2001 Near-Field Optics and Surface Plasmon Polaritons (Vol.81) (Berlin Heidelberg: Springer) p19

    [2]

    Juan M L, Righini M Quidant R 2011 Nat Photonics 5 349

    [3]

    MAIER S A 2006 Plasmonics:Fundamentals and Applications (New York: Springer) p21

    [4]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express 20 17734

    [5]

    Takeda1 M, Kimura1 N, Inoue T, Aizawa K 2015 Jpn. J. Appl. Phys. 54 09MG02

    [6]

    Zhao X N, Zhang X P, Cao P F, Cheng L, Duan J X, Cheng L B, Kong W J, Yang L L 2013 Optik 124 6740

    [7]

    Lan L, Jiang W, Ma Y 2013 Appl. Phys.Lett. 102 231119

    [8]

    Venugopalan P, Zhang Q M, Li X P, Kuipers L, Gu M 2014 Opt. Lett. 39 5744

    [9]

    Wang J, Zhou W 2010 Plasmonics 5 325

    [10]

    Guo K, Liu J L, Liu S T 2014 Opt Commun 331 124

    [11]

    Liu Y, Fu Y Q, Zhou X L 2010 Plasmonics 5 117

    [12]

    Hao F H, Wang R Wang J 2010 Plasmonics 5 45

    [13]

    Okuda S, Kimur N, Takeda M, Inoue T, Aizawa K 2014 Opt. Rev. 21 560

    [14]

    Liu Y X, Xu Hua, Stief F, Zhitenev N, Yu M 2011 Opt. Express 19 20233

    [15]

    Wu G, Chen J J Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [16]

    Duan X F Zhou G R, Huang Y Q, Shang Y F, Ren X M 2015 Opt. Express 23 2639

    [17]

    Cheng L, Cao P F, Li Y, Kong W J, Zhao X N, Zhang X P 2012 Plasmonics 7 175

    [18]

    Sun Z J, Kim H K 2004 Appl. Phys. Lett. 85 642

    [19]

    Yu Y T, Zappe H 2011 Opt. Express 19 9434

    [20]

    Xu T, Wang C T, Du C L, Luo X G 2008 Opt. Express 16 4753

    [21]

    Johnson R B, Christy R W 1972 Phys. Rev. B 6 4370

    [22]

    Palik E D 1985 Handbook of optical constants of solids (New York: Academic Press) pp723-729

    [23]

    Barnes W L 2006 J. Opt. A-Pure Appl. Opt. 8 S87

    [24]

    Chen J N, Xu Q F, Wang G 2011 Chinese. Phys. B 20 114211

    [25]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [26]

    Li Y, Wolf E 1981 Opt. Commun. 39 211

    [27]

    Feng D 2014 J. Opt. Soc. Am. A 31 2071

    [28]

    Shi H F, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 093111

  • [1] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [2] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [3] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [4] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [5] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [6] 高向军, 朱莉, 郭文龙. 高极化纯度的超表面透镜设计与应用. 物理学报, 2017, 66(20): 204102. doi: 10.7498/aps.66.204102
    [7] 王 丽, 胡响明. 相长干涉:电磁诱导吸收. 物理学报, 2004, 53(8): 2544-2550. doi: 10.7498/aps.53.2544
    [8] 仲义, 许吉, 陆云清, 王敏娟, 王瑾. 基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦. 物理学报, 2014, 63(23): 237801. doi: 10.7498/aps.63.237801
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [14] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [15] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [16] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [19] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [20] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
  • 引用本文:
    Citation:
计量
  • 文章访问数:  591
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-15
  • 修回日期:  2016-04-26
  • 刊出日期:  2016-07-05

介质填充型二次柱面等离激元透镜的亚波长聚焦

  • 1. 南京大学物理学院, 固体微结构国家重点实验室, 南京 210093;
  • 2. 南京邮电大学光电工程学院, 南京 210023
  • 通信作者: 丁剑平, jpding@nju.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11474156, 11404170, 11274158)资助的课题.

摘要: 本文提出了一种亚波长聚焦的表面等离激元透镜, 该透镜由二氧化硅填充金膜纳米狭缝阵列组成, 金膜的出射表面为二次柱面. 表面等离激元在狭缝入口处激发并沿狭缝传输, 在狭缝出口转变为带有一定相位延迟的自由空间传播的光波. 通过对透镜结构参数的控制, 可以调节来自各狭缝的光波间的相对相位, 使它们在设定的焦点处进行相长干涉, 从而实现聚焦效果. 本文用时域有限差分法数值计算了二次柱面等离激元透镜的聚焦特性. 数值模拟结果表明, 所设计的孔径为2 m的透镜, 能够实现微米级焦距和焦深、且焦斑半高宽低至0.4倍波长的亚 波长聚焦. 该表面等离激元透镜结构简单紧凑、尺寸小, 有利于光子器件的集成, 在集成光学、光学微操纵、超分辩率成像、光存储、生化传感等相关领域有潜在的应用价值.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回