Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles

Chen Qiang Zhong Chong-Gui Yuan Guo-Qiu Dong Zheng-Chao Fang Jing-Huai

Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles

Chen Qiang, Zhong Chong-Gui, Yuan Guo-Qiu, Dong Zheng-Chao, Fang Jing-Huai
PDF
Get Citation
  • The study on magnetoelectric effect in hexagonal perovskite structure HoMnO3 has become a very important aspect in the research of multiferroic materials. In this paper, using the first principles based on the generalized gradient approximation of density functional theory and considering the noncollinear magnetic structure calculation, the effects of the interation between on-site Coulomb of d electron and spin-orbit coupling on the electronic density of states and energy band structure of HoMnO3 are calculated and investigated. The calculations show that due to the on-site Coulomb interaction, the strong hybridization of Ho 5d with O(3, 4) 2p and Mn 3d with O(1, 2) 2p orbits are considered as the origin of driving force for the ferroelectric distortion. At the same time, the distributions of the energy gap and energy band provide a theoretical support for the explanation of strong optical absorption peak in experiment. In addition, the spin-orbit coupling makes the orbital hybridization of Mn 3d with O(3, 4) 2p within the ab plane strengthened, and the partial energy degeneracy in the ab plane is eliminated. The HoMnO3 is shown to possess the insulator characteristics of typical indirect energy gap.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974104, 50832002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), the Qing Lan Project of Education Department of Jiangsu Province, China, and the Initializing Fund on Scientific Research of Doctors in Nantong University, China.
    [1]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [2]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [3]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 541

    [4]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett. 108 047203

    [5]

    Han T C, Lin J G 2009 Appl. Phys. Lett. 94 082502

    [6]

    Cheong S W, Mostovoy M 2007 Nature Mater. 6 13

    [7]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [8]

    Litvinchuk A P, Iliev M N, Popov V N 2004 J. Phys.: Condens. Matter 16 809

    [9]

    Vajk O P, Kenzelmann M, Lynn J W, Kim S B, Cheong S W 2005 Phys. Rev. Lett. 94 087601

    [10]

    Katsufuji T, Mori S, Masaki M, Moritomo Y, Yamamoto N, Takagi H 2001 Phys. Rev. B 64 104419

    [11]

    Ueland B G, Lynn J W, Laver M, Choi Y J, Cheong S W 2010 Phys. Rev. Lett. 104 147204

    [12]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S B 2009 Phys. Rev. B 79 134120

    [13]

    Vermette J, Jandl S, Orlita M, Gospodinov M M 2012 Phys. Rev. B 85 134445

    [14]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 Journal of Nantong University (Nat. Sci. Ed.) 10 58 (in Chinese) [仲崇贵, 陈强, 董正超, 方靖淮 2011 南通大学学报 (自然科学版) 10 58]

    [15]

    Guo X, Wang X, Zheng W, Tang W H 2010 Acta Phys. Sin. 59 2815 (in Chinese) [郭熹, 王霞, 郑鹉, 唐为华 2010 物理学报 59 2815]

    [16]

    Zhong C G, Cao H X, Fang J H, Jiang X F, Ji X M, Dong Z C 2010 Appl. Phys. Lett. 97 049103

    [17]

    Oak M A, Lee J H, Jang H M 2011 Phys. Rev. B 84 153106

    [18]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范2011 物理化学学报 27 388]

    [19]

    Mochizuki M, Furukawa N 2009 J. Phys. Soc. Jpn. 78 053704

    [20]

    Mochizuki M, Furukawa N 2009 Phys. Rev. B 80 134416

    [21]

    Lorenz B, Litvinchuk A P, Gospodinov M M, Chu C W 2004 Phys. Rev. Lett. 92 087204

    [22]

    Brown P J, Chatterji T 2008 Phys. Rev. B 77 104407

    [23]

    Fiebig M, Lottermoser T, Pisarec R V 2003 J. Appl. Phys. 93 8194

    [24]

    Nandi S, Kreyssig A, Tan L Kim J W, Yan J Q, Lang J C, Haskel D, McQueeney J, Goldman A I 2008 Phys. Rev. Lett. 100 217201

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Choi W S, Kim D G, Seo S S A, Moon S J, Lee D, Lee J H, Lee H S 2008 Phys. Rev. B 77 045137

    [29]

    Kang J S, Han S W, Park J G, Wi S C, Lee S S, Kim G, Song H J, Shin H J, Jo W, Min B I 2005 Phys. Rev. B 71 092405

    [30]

    Souchkov A B, Simpson J R, Quijada M, Ishibashi H, Hur N, Ahn J S, Cheong S W, Millis A J, Drew H D 2003 Phys. Rev. Lett. 91 027203

    [31]

    Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, Kanno R 2001 Phys. Rev. B 64 245107

    [32]

    Filippetti A, Hill N A 2002 Phys. Rev. B 65 195120

  • [1]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [2]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [3]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 541

    [4]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett. 108 047203

    [5]

    Han T C, Lin J G 2009 Appl. Phys. Lett. 94 082502

    [6]

    Cheong S W, Mostovoy M 2007 Nature Mater. 6 13

    [7]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [8]

    Litvinchuk A P, Iliev M N, Popov V N 2004 J. Phys.: Condens. Matter 16 809

    [9]

    Vajk O P, Kenzelmann M, Lynn J W, Kim S B, Cheong S W 2005 Phys. Rev. Lett. 94 087601

    [10]

    Katsufuji T, Mori S, Masaki M, Moritomo Y, Yamamoto N, Takagi H 2001 Phys. Rev. B 64 104419

    [11]

    Ueland B G, Lynn J W, Laver M, Choi Y J, Cheong S W 2010 Phys. Rev. Lett. 104 147204

    [12]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S B 2009 Phys. Rev. B 79 134120

    [13]

    Vermette J, Jandl S, Orlita M, Gospodinov M M 2012 Phys. Rev. B 85 134445

    [14]

    Zhong C G, Chen Q, Dong Z C, Fang J H 2011 Journal of Nantong University (Nat. Sci. Ed.) 10 58 (in Chinese) [仲崇贵, 陈强, 董正超, 方靖淮 2011 南通大学学报 (自然科学版) 10 58]

    [15]

    Guo X, Wang X, Zheng W, Tang W H 2010 Acta Phys. Sin. 59 2815 (in Chinese) [郭熹, 王霞, 郑鹉, 唐为华 2010 物理学报 59 2815]

    [16]

    Zhong C G, Cao H X, Fang J H, Jiang X F, Ji X M, Dong Z C 2010 Appl. Phys. Lett. 97 049103

    [17]

    Oak M A, Lee J H, Jang H M 2011 Phys. Rev. B 84 153106

    [18]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范2011 物理化学学报 27 388]

    [19]

    Mochizuki M, Furukawa N 2009 J. Phys. Soc. Jpn. 78 053704

    [20]

    Mochizuki M, Furukawa N 2009 Phys. Rev. B 80 134416

    [21]

    Lorenz B, Litvinchuk A P, Gospodinov M M, Chu C W 2004 Phys. Rev. Lett. 92 087204

    [22]

    Brown P J, Chatterji T 2008 Phys. Rev. B 77 104407

    [23]

    Fiebig M, Lottermoser T, Pisarec R V 2003 J. Appl. Phys. 93 8194

    [24]

    Nandi S, Kreyssig A, Tan L Kim J W, Yan J Q, Lang J C, Haskel D, McQueeney J, Goldman A I 2008 Phys. Rev. Lett. 100 217201

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Choi W S, Kim D G, Seo S S A, Moon S J, Lee D, Lee J H, Lee H S 2008 Phys. Rev. B 77 045137

    [29]

    Kang J S, Han S W, Park J G, Wi S C, Lee S S, Kim G, Song H J, Shin H J, Jo W, Min B I 2005 Phys. Rev. B 71 092405

    [30]

    Souchkov A B, Simpson J R, Quijada M, Ishibashi H, Hur N, Ahn J S, Cheong S W, Millis A J, Drew H D 2003 Phys. Rev. Lett. 91 027203

    [31]

    Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, Kanno R 2001 Phys. Rev. B 64 245107

    [32]

    Filippetti A, Hill N A 2002 Phys. Rev. B 65 195120

  • [1] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [2] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [3] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [4] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [5] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [6] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [7] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [8] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [9] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
    [10] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [11] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  695
  • PDF Downloads:  709
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2013
  • Accepted Date:  12 March 2013
  • Published Online:  20 June 2013

Research on optical absorption and distortion driving in multiferroic HoMnO3 from the first principles

  • 1. School of Sciences, Nantong University, Nantong 226007, China;
  • 2. Department of Basic Courses, Nantong Shipping College, Nantong 226010, China;
  • 3. School of Physical Sciences and Technology, Suzhou University, Suzhou 215006, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 10974104, 50832002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), the Qing Lan Project of Education Department of Jiangsu Province, China, and the Initializing Fund on Scientific Research of Doctors in Nantong University, China.

Abstract: The study on magnetoelectric effect in hexagonal perovskite structure HoMnO3 has become a very important aspect in the research of multiferroic materials. In this paper, using the first principles based on the generalized gradient approximation of density functional theory and considering the noncollinear magnetic structure calculation, the effects of the interation between on-site Coulomb of d electron and spin-orbit coupling on the electronic density of states and energy band structure of HoMnO3 are calculated and investigated. The calculations show that due to the on-site Coulomb interaction, the strong hybridization of Ho 5d with O(3, 4) 2p and Mn 3d with O(1, 2) 2p orbits are considered as the origin of driving force for the ferroelectric distortion. At the same time, the distributions of the energy gap and energy band provide a theoretical support for the explanation of strong optical absorption peak in experiment. In addition, the spin-orbit coupling makes the orbital hybridization of Mn 3d with O(3, 4) 2p within the ab plane strengthened, and the partial energy degeneracy in the ab plane is eliminated. The HoMnO3 is shown to possess the insulator characteristics of typical indirect energy gap.

Reference (32)

Catalog

    /

    返回文章
    返回