x

## 留言板

Application of precise integration in waveguide discontinuities with anisotropic dielectric

## Application of precise integration in waveguide discontinuities with anisotropic dielectric

Yang Hong-Wei, Mu Zhen-Feng, Wang Zhen
PDF

• #### Abstract

Waveguide discontinuities with anisotropic dielectric are simulated and analyzed by the precise integration method. The discrete coefficient matrices for the cross-section of the waveguide, which contains anisotropic dielectric, are deduced from the variational principle based on single variable corresponding to the vector wave equation. Introducing the dual-variables, the stiff matrices are calculated by using precise integration method in a Hamiltonion system. Then the problem is solved by assembling the finite elements. Numerical results show accuracy and good efficiency of the method. The influence of the components of permittivity and permeability on the waveguide transmission characteristic is also discussed.

#### Authors and contacts

• Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172008, 10972013).

#### References

 [1] Rahman B M A, Davies J B 1988 IEEE J. Lightwave Tecnol. 6 52 [2] Yang R, Xie Y J, Wang Y Y, Fu H Z 2008 Acta Phys. Sin. 57 5513 (in Chinese) [杨锐, 谢拥军, 王元源, 傅焕展 2008 物理学报 57 5513] [3] Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 物理学报 60 059204] [4] Cheng J F, Xu S J 2001 Acta Electron. Sin. 29 708 (in Chinese) [程军峰, 徐善驾 2001 电子学报 29 708] [5] Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Edn.) (New York: John Wiley & Sons) p126 [6] Bian J F, Yu C, Zhong S S 2002 J. Shanghai Univ. Natural Science Edition 8 7 (in Chinese) [卞军峰, 余春, 钟顺时 2002 上海大学学报 (自然科学版) 8 7] [7] Zhou P, Xu J P 2004 J. Microw. 20 43 (in Chinese) [周平, 徐金平 2004 微波学报 20 43] [8] Zhao W, Zhao Y J, Lu H M 2008 J. Xidian Univ. Nat. Sci. Ed. 35 894 (in Chinese) [赵伟, 赵永久, 路宏敏 2008 西安电子科技大学学报 (自然科学版) 35 894] [9] Chen J F, Zhu B, Zhong W X 2009 Acta Phys. Sin. 58 1091 (in Chinese) [陈杰夫, 朱宝, 钟万勰 2009 物理学报 58 1091] [10] Zhong W X 2002 Dual System in Applied Mechanics (Beijing: Science Press) p24 (in Chinese) [钟万勰 2002 应用力学对偶体系 (北京: 科学出版社) 第24页] [11] Zhong W X, Zhu J P 1996 J. Num. Meth. Comput. Appl. 1 26 (in Chinese) [钟万勰, 朱建平 1996 数值计算与计算机应用 1 26] [12] Zhong W X 2001 J. Dalian Univ. Technol. 41 379 (in Chinese) [钟万勰 2001 大连理工大学学报 41 379]

#### Cited By

•  [1] Rahman B M A, Davies J B 1988 IEEE J. Lightwave Tecnol. 6 52 [2] Yang R, Xie Y J, Wang Y Y, Fu H Z 2008 Acta Phys. Sin. 57 5513 (in Chinese) [杨锐, 谢拥军, 王元源, 傅焕展 2008 物理学报 57 5513] [3] Gong J Q, Liang C H 2011 Acta Phys. Sin. 60 059204 (in Chinese) [龚建强, 梁昌洪 2011 物理学报 60 059204] [4] Cheng J F, Xu S J 2001 Acta Electron. Sin. 29 708 (in Chinese) [程军峰, 徐善驾 2001 电子学报 29 708] [5] Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Edn.) (New York: John Wiley & Sons) p126 [6] Bian J F, Yu C, Zhong S S 2002 J. Shanghai Univ. Natural Science Edition 8 7 (in Chinese) [卞军峰, 余春, 钟顺时 2002 上海大学学报 (自然科学版) 8 7] [7] Zhou P, Xu J P 2004 J. Microw. 20 43 (in Chinese) [周平, 徐金平 2004 微波学报 20 43] [8] Zhao W, Zhao Y J, Lu H M 2008 J. Xidian Univ. Nat. Sci. Ed. 35 894 (in Chinese) [赵伟, 赵永久, 路宏敏 2008 西安电子科技大学学报 (自然科学版) 35 894] [9] Chen J F, Zhu B, Zhong W X 2009 Acta Phys. Sin. 58 1091 (in Chinese) [陈杰夫, 朱宝, 钟万勰 2009 物理学报 58 1091] [10] Zhong W X 2002 Dual System in Applied Mechanics (Beijing: Science Press) p24 (in Chinese) [钟万勰 2002 应用力学对偶体系 (北京: 科学出版社) 第24页] [11] Zhong W X, Zhu J P 1996 J. Num. Meth. Comput. Appl. 1 26 (in Chinese) [钟万勰, 朱建平 1996 数值计算与计算机应用 1 26] [12] Zhong W X 2001 J. Dalian Univ. Technol. 41 379 (in Chinese) [钟万勰 2001 大连理工大学学报 41 379]
•  [1] Chen Jie-Fu, Zheng Chang-Liang, Zhong Wan-Xie. Symplectic analysis and dual edge element for electromagnetic waveguide. Acta Physica Sinica, 2006, 55(5): 2340-2346. doi: 10.7498/aps.55.2340 [2] Wang Lei, Fan Yi-Ren, Huang Rui, Han Yu-Jiao, Wu Zhen-Guan, Xing Dong-Hui, Li Wei. Three dimensional Born geometrical factor of multi-component induction logging in anisotropic media. Acta Physica Sinica, 2015, 64(23): 239301. doi: 10.7498/aps.64.239301 [3] Lin Bao-Qin, Xu Li-Jun, Yuan Nai-Chang. Uniplanar compact photonic band-gap on uniaxial anisotropic substrate. Acta Physica Sinica, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711 [4] Yang Li-Xia, Ge De-Biao. Padé-finite-difference time-domain analysis of electromagnetic scattering in magnetic anisotropic medium. Acta Physica Sinica, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751 [5] Liu Qi-Neng. The defect mode and the quantum effect of light wave in cylindrical anisotropic photonic crystal. Acta Physica Sinica, 2011, 60(1): 014217. doi: 10.7498/aps.60.014217 [6] ZHENG HONG-XING GE, DE-BIAO. ELECTROMAGNETIC WAVE REFLECTION AND TRANSMISSION OF ANISOTROPIC LAYERED MEDIA BY GENERALIZED PROPAGATION MATRIX METHOD. Acta Physica Sinica, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702 [7] Yang Hong-Wei, Meng Shan-Shan, Gao Ran-Ran, Peng Shuo. Analysis of photonic crystal transmission properties by the precise integration time domain. Acta Physica Sinica, 2017, 66(8): 084101. doi: 10.7498/aps.66.084101 [8] Lin Wei-gan. THE EQUIVALENT CIRCUIT FOR A DISCONTINUITY IN A RECTANGULAR WAVE GUIDE. Acta Physica Sinica, 1956, 12(5): 459-476. doi: 10.7498/aps.12.459 [9] Tang Shi-Hong, Li Jian-Long, Fu Ke-Xiang, Zhu Shi-Fu. Propagation of the electromagnetic field in anisotropic relief gratings. Acta Physica Sinica, 2010, 59(8): 5467-5473. doi: 10.7498/aps.59.5467 [10] LI GUO-WANG, HUANG LIN-GEN, YANG SHUN-HUA. DISLOCATION IN MOVING NEAR THE FREE SURFACE ——ANISOTROPIC CASE. Acta Physica Sinica, 1992, 41(1): 69-79. doi: 10.7498/aps.41.69 [11] Huo Guang-Pu, Hu Xiang-Yun, Fang Hui, Huang Yi-Fan. Magnetotelluric joint inversion for anisotropic conductivities in layered media. Acta Physica Sinica, 2012, 61(12): 129101. doi: 10.7498/aps.61.129101 [12] Hong Qing-Quan, Zhong Wei-Bo, Yu Yan-Zhong, Cai Zhi-Shan, Chen Mu-Sheng, Lin Shun-Da. Radiation power of electric diople in magnetic anisotropic medium. Acta Physica Sinica, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302 [13] Li Qiong, Zhai Yong-Hui, Liang Guo, Guo Qi. The characteristics of elliptical optical soliton in anisotropic medium. Acta Physica Sinica, 2013, 62(2): 024202. doi: 10.7498/aps.62.024202 [14] Chen Gui-Bo, Bi Juan, Zhang Ye, Li Zong-Wen. High-order generalized extended Born approximation algorithm for 3D electromagnetic responses modeling in anisotropic medium. Acta Physica Sinica, 2013, 62(9): 094101. doi: 10.7498/aps.62.094101 [15] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101 [16] . . Acta Physica Sinica, 1965, 21(5): 1049-1060. doi: 10.7498/aps.21.1049 [17] . . Acta Physica Sinica, 1965, 21(5): 1083-1088. doi: 10.7498/aps.21.1083 [18] Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan. Experimental study of the spatial discontinuity of dynamic damage evolution. Acta Physica Sinica, 2013, 62(22): 226201. doi: 10.7498/aps.62.226201 [19] SUN JIAN-GANG, GUAN SHAN, JI XI-PING, HE DA-REN, WANG BING-HONG, QU SHI-XIAN. NEW CRISES DUE TO DYNAMICAL DISCONTINUITY. Acta Physica Sinica, 1996, 45(12): 1970-1977. doi: 10.7498/aps.45.1970 [20] Chen Gui-Bo, Wang Hong-Nian, Yao Jing-Jin, Han Zi-Ye, Yang Shou-Wen. An efficient algorithm of the electromagnetic dyadic Green’s function in a horizontal-layered anisotropic medium. Acta Physica Sinica, 2009, 58(3): 1608-1618. doi: 10.7498/aps.58.1608
•  Citation:
##### Metrics
• Abstract views:  1262
• Cited By: 0
##### Publishing process
• Received Date:  31 August 2012
• Accepted Date:  20 March 2013
• Published Online:  05 July 2013

## Application of precise integration in waveguide discontinuities with anisotropic dielectric

• 1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11172008, 10972013).

Abstract: Waveguide discontinuities with anisotropic dielectric are simulated and analyzed by the precise integration method. The discrete coefficient matrices for the cross-section of the waveguide, which contains anisotropic dielectric, are deduced from the variational principle based on single variable corresponding to the vector wave equation. Introducing the dual-variables, the stiff matrices are calculated by using precise integration method in a Hamiltonion system. Then the problem is solved by assembling the finite elements. Numerical results show accuracy and good efficiency of the method. The influence of the components of permittivity and permeability on the waveguide transmission characteristic is also discussed.

Reference (12)

/