Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SPFGO effects on the electroluminescence and photovoltaic response in conjugated polymers

He Jia-Qi He Da-Wei Wang Yong-Sheng Liu Zhi-Yong

SPFGO effects on the electroluminescence and photovoltaic response in conjugated polymers

He Jia-Qi, He Da-Wei, Wang Yong-Sheng, Liu Zhi-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper studies the influence of poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) on solution-processable functionalized graphene oxide (SPFGO) composite film-based organic light emitting Diode (OLED) and organic photovoltaic (OPV) performance for different SPFGO concentrations. There is a strong quenching of photoluminescence when MEH-PPV is doped with SPFGO, which means there is a strong transfer of electron and energy between MEH-PPV and SPFGO. Doping SPFGO in MEH-PPV can improve the performance of OLED at low concentration, and the performance will be the best when the concentration of SPFGO is 0.2%; however, the performance of OPV remains unchanged. The performance of OPV could be improved by high doping concentration of SPFGO, the performance will be the best when the concentration of SPFGO reaches 15%, and there is a quenching in the electroluminescence (EL) of OLED. As shown in the statistics of the experiment, SPFGO can increase the injectivity of carriers, and when the SPFGO is of low concentration, it can increase the luminous intensity of OLED and reduce the threshold voltage. SPFGO can act as an electron acceptor, and when the concentration of SPFGO is high, the exciton dissociation at MEH-PPV/SPFGO interface can be improved, and the performance of OPV can be also improved. Therefore, the concentration of SPFGO should be the main factor in adjusting the performance of OLED and OPV separately.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Science Fund for Distinguished Young Scholars of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant No. 61077044), and the Natural Science Foundation of Beijing, China (Grant No. 4132031), and the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006).
    [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C 1999 Nature 397 121

    [2]

    Yu H Z, Peng J B, Zhao X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠, 彭俊彪, 周晓明 2008 物理学报 57 3898]

    [3]

    Madhava Rao M V, Su Y K, Huang T S, Chen Y C 2010 Nano-Micro Lett. 2 242

    [4]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature (London) 382 54

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [6]

    Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B 1995 Nature (London) 376 498

    [7]

    Bolotina K I, Sikesb K J, Jianga Z, Klimac M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [8]

    Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Eric Siu-Wai Kong, Zhang Y F 2012 Nano. Micro Lett. 4 1

    [9]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [10]

    Wang X, Zhi L, Mullen K 2008 Nano Lett. 8 323

    [11]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [13]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [14]

    Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M 2003 Solid State Ionics. 165 289

    [15]

    Kyu W L, Lee S P, Choi H, Kyu H M, Jae W J, Kweon H, Cheol E J 2007 Appl. Phys. Lett. 91 023110

    [16]

    Xu Z H, Wu Y, Hu B 2005 Appl. Phys. Lett. 87 263118

    [17]

    Berson S, Bettignies R de, Bailly S, Guillerez S, Jousselme B 2007 Adv. Funct. Mater. 17 3363

    [18]

    Ibrahim M A, Roth H K, Zhokhavets U, Gobsch G, Sensfuss S 2005 Sol. Energy Mate. Sol. Cells. 85 13

    [19]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 11716 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 物理学报 60 11716]

  • [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C 1999 Nature 397 121

    [2]

    Yu H Z, Peng J B, Zhao X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠, 彭俊彪, 周晓明 2008 物理学报 57 3898]

    [3]

    Madhava Rao M V, Su Y K, Huang T S, Chen Y C 2010 Nano-Micro Lett. 2 242

    [4]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature (London) 382 54

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [6]

    Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B 1995 Nature (London) 376 498

    [7]

    Bolotina K I, Sikesb K J, Jianga Z, Klimac M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [8]

    Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Eric Siu-Wai Kong, Zhang Y F 2012 Nano. Micro Lett. 4 1

    [9]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [10]

    Wang X, Zhi L, Mullen K 2008 Nano Lett. 8 323

    [11]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [13]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [14]

    Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M 2003 Solid State Ionics. 165 289

    [15]

    Kyu W L, Lee S P, Choi H, Kyu H M, Jae W J, Kweon H, Cheol E J 2007 Appl. Phys. Lett. 91 023110

    [16]

    Xu Z H, Wu Y, Hu B 2005 Appl. Phys. Lett. 87 263118

    [17]

    Berson S, Bettignies R de, Bailly S, Guillerez S, Jousselme B 2007 Adv. Funct. Mater. 17 3363

    [18]

    Ibrahim M A, Roth H K, Zhokhavets U, Gobsch G, Sensfuss S 2005 Sol. Energy Mate. Sol. Cells. 85 13

    [19]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 11716 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 物理学报 60 11716]

  • [1] Jiang Wen-Long, Meng Zhao-Hui, Cong Lin, Wang Jin, Wang Li-Zhong, Han Qiang, Meng Fan-Chao, Gao Yong-Hui. The role of magnetic fields on the efficiency of OLED of double quantum well structures. Acta Physica Sinica, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [2] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [3] Hu Yue, Rao Hai-Bo, Li Jun-Fei. Numerical model of ITO /organic semiconductor/metal organic light emitting device. Acta Physica Sinica, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
  • Citation:
Metrics
  • Abstract views:  761
  • PDF Downloads:  769
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2013
  • Accepted Date:  27 May 2013
  • Published Online:  05 September 2013

SPFGO effects on the electroluminescence and photovoltaic response in conjugated polymers

  • 1. Institute of Optoelectronic Technology, Beijing Jiaotong University, Key Laboratory for Information Storage, Displays and Materials, Beijing 100044, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Science Fund for Distinguished Young Scholars of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant No. 61077044), and the Natural Science Foundation of Beijing, China (Grant No. 4132031), and the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006).

Abstract: This paper studies the influence of poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) on solution-processable functionalized graphene oxide (SPFGO) composite film-based organic light emitting Diode (OLED) and organic photovoltaic (OPV) performance for different SPFGO concentrations. There is a strong quenching of photoluminescence when MEH-PPV is doped with SPFGO, which means there is a strong transfer of electron and energy between MEH-PPV and SPFGO. Doping SPFGO in MEH-PPV can improve the performance of OLED at low concentration, and the performance will be the best when the concentration of SPFGO is 0.2%; however, the performance of OPV remains unchanged. The performance of OPV could be improved by high doping concentration of SPFGO, the performance will be the best when the concentration of SPFGO reaches 15%, and there is a quenching in the electroluminescence (EL) of OLED. As shown in the statistics of the experiment, SPFGO can increase the injectivity of carriers, and when the SPFGO is of low concentration, it can increase the luminous intensity of OLED and reduce the threshold voltage. SPFGO can act as an electron acceptor, and when the concentration of SPFGO is high, the exciton dissociation at MEH-PPV/SPFGO interface can be improved, and the performance of OPV can be also improved. Therefore, the concentration of SPFGO should be the main factor in adjusting the performance of OLED and OPV separately.

Reference (19)

Catalog

    /

    返回文章
    返回