Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure

Mo Man-Man Wen Qi-Ye Chen Zhi Yang Qing-Hui Li Sheng Jing Yu-Lan Zhang Huai-Wu

A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure

Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we present an ultra-broadband polarization-independent terahertz (THz) metamaterial absorber (MA) made of circular truncated cone metamaterial. Absorptivity higher than 92.3% at normal incidence is obtained in a wide range of frequencies from 2 to 10 THz. We employ an isotropic metamaterial cell which consists of alternating layers of Au metal and SiO2 dielectric spacer. The absorption spectra of the THz MA are calculated using the finite-difference time domain (FDTD) method within the CST Microwave Studio 2009 in the frequency range of 0–10 THz. Our broadband absorber can be regarded as a group of micro-absorbers perpendicularly stacked and their absorption peaks coupling to each other to form an ultra broadband absorption. This THz MA has the advantages of broadband, polarization-independent and fabrication facility, and thus can be widely applied in THz wave harvesting, detection, spectrum imaging and stealthy technology.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61131005), the Key Project of Chinese Ministry of Education of China (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • [1] Chen Xu-Sheng, Li Jiu-Sheng. Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure. Acta Physica Sinica, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [2] Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon. Acta Physica Sinica, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [3] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [4] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [5] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [6] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [7] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [8] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [9] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [10] Zhao Zan-Shan, Li Pei-Li. All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser. Acta Physica Sinica, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [11] Lu Jin-Xing, Huang Zhi-Ming, Huang Jing-Guo, Wang Bing-Bing, Shen Xue-Min. Analysis of the effect of phase-mismatch and material absorption on the terahertz-wave generation from GaSe. Acta Physica Sinica, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [12] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [13] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [14] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [15] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [16] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [17] Wu Qun, Wang Yue, He Xun-Jun, Yin Jing-Hua, Shi Wei. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [18] Wu Yu-Ming, Le Li-Wei, Wang Yan, Wang Dong-Xing, Fu Jia-Hui, Wang Yue, Wu Qun. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes. Acta Physica Sinica, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [19] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [20] Liu Huan, Yao Jian-Quan, Zheng Fang-Hua, Lu Yang, Wang Peng. A dual-wavelength diode-end-pumped Nd:YAG laser operating simultaneously at 1319 and 1338nm. Acta Physica Sinica, 2008, 57(1): 230-237. doi: 10.7498/aps.57.230
  • Citation:
Metrics
  • Abstract views:  1497
  • PDF Downloads:  816
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2013
  • Accepted Date:  06 September 2013
  • Published Online:  05 December 2013

A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure

  • 1. State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
  • 2. National Key Laboratory of Science and Technology on Communication. University of Electronic Science and Technology of China, Chengdu 610054, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61131005), the Key Project of Chinese Ministry of Education of China (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).

Abstract: In this paper, we present an ultra-broadband polarization-independent terahertz (THz) metamaterial absorber (MA) made of circular truncated cone metamaterial. Absorptivity higher than 92.3% at normal incidence is obtained in a wide range of frequencies from 2 to 10 THz. We employ an isotropic metamaterial cell which consists of alternating layers of Au metal and SiO2 dielectric spacer. The absorption spectra of the THz MA are calculated using the finite-difference time domain (FDTD) method within the CST Microwave Studio 2009 in the frequency range of 0–10 THz. Our broadband absorber can be regarded as a group of micro-absorbers perpendicularly stacked and their absorption peaks coupling to each other to form an ultra broadband absorption. This THz MA has the advantages of broadband, polarization-independent and fabrication facility, and thus can be widely applied in THz wave harvesting, detection, spectrum imaging and stealthy technology.

Reference (29)

Catalog

    /

    返回文章
    返回