搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于几何相位的太赫兹编码超表面反射器研制与测试

姜在超 宫正 钟芸襄 崔彬 邹斌 杨玉平

引用本文:
Citation:

基于几何相位的太赫兹编码超表面反射器研制与测试

姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平

Encoding terahertz metasurface reflectors based on geometrical phase modulation

Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping
PDF
HTML
导出引用
  • 基于几何相位的编码超表面对太赫兹(THz)波的偏振状态进行多维度、多自由度调控, 具有重要的应用前景. 本文提出了一种由反“S”形状的金属图案编码粒子构建的超表面, 垂直入射情况下, 在0.50—1.80 THz范围内的太赫兹波振幅反射率高于80%; 结合Pancharatnam-Berry几何相位理论, 通过旋转所设计单元的角度, 获得8种编码粒子, 设计了3种不同序列排布的1-bit, 2-bit和3-bit编码超表面, 并操控反射THz波分别产生不同角度的分束和偏折. 此外, 采用正入射和变角度的THz时域光谱仪分别对各个编码子单元结构阵列的反射特性(包括振幅反射率、相位、相位覆盖范围等)和设计的2-bit超表面的角度偏折现象进行测试; 对比理论数值、模拟结果和实验结果, 分析理论数值和实验数值之间存在偏差的原因, 对满足实际需求的超表面逆向设计具有一定的借鉴意义.
    Multi-dimension and multi-freedom modulation of polarization state based on the geometrical-phase periodic encoding metasurface has important application prospects. Here, terahertz metasurface composed of specially shaped metal pattern coded particles is proposed. When the coded particles are normally incident, the amplitude reflectivity of the terahertz wave is above 80% in a range of 0.50–1.80 THz. Combined with the Pancharatnam-Berry (P-B) phase theory, 8 kinds of coded particles are designed by rotating the angle of the designed unit. Three kinds of 1-bit, 2-bit, and 3-bit periodic encoding metasurfaces with different encoding sequences are used to manipulate the reflected terahertz waves splitting into multiple-beam with different deflection angles. In addition, both reflection characteristics (including amplitude, phase, and phase coverage) of all coded particles and the angle deflection of the designed 2-bit periodic metasurface are measured by normal incidence THz time-domain spectrometer and variable incident angle THz time-domain spectrometer, respectively. Based on generalized Snell law and experimental results, the reason for the discrepancy between theoretical value and experimental value is further analyzed, which can provide a reference for the reverse design of the coded metasurfaces to meet various practical needs.
      通信作者: 邹斌, zoubin@muc.edu.cn ; 杨玉平, ypyang@muc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB2009303, 2017YFB00405402)和国家自然科学基金(批准号:62075248)资助的课题.
      Corresponding author: Zou Bin, zoubin@muc.edu.cn ; Yang Yu-Ping, ypyang@muc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFB2009303, 2017YFB00405402) and the National Natural Science Foundation of China (Grant No. 62075248).
    [1]

    Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar

    [2]

    Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar

    [3]

    Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar

    [4]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [5]

    Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar

    [6]

    Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar

    [7]

    Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar

    [8]

    Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar

    [9]

    Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar

    [10]

    Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar

    [11]

    Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar

    [12]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [13]

    Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar

    [14]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar

    [15]

    Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar

    [16]

    Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar

    [17]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [18]

    Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar

    [19]

    Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar

    [20]

    Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar

    [21]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [22]

    Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [23]

    Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar

    [24]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar

    [25]

    Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [26]

    Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar

    [27]

    Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar

    [28]

    Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar

    [29]

    Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar

    [30]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar

    [31]

    Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar

    [32]

    Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar

    [33]

    Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [34]

    Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar

    [36]

    张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar

    Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar

    [37]

    Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar

    [38]

    Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar

  • 图 1  反射式太赫兹时域光谱仪的结构示意图 (a) 正入射; (b) 变角度

    Fig. 1.  Schematic diagram of THz-TDS systems in reflection mode: (a) Normal incidence; (b) variable angle.

    图 2  (a) 编码粒子的结构示意图; (b) 圆偏振波正入射下单元的同偏振和交叉偏振的振幅反射率; 三个谐振频率处结构单元的表面电场(c)、表面电流(d)和背面电流(e)的分布图

    Fig. 2.  (a) Structure of coded particle; (b) co-polarization and cross-polarization amplitude reflectivities of the unit under normal incidence of circularly polarized waves; distribution diagrams of the front surface electric field (c), front surface current (d), and rear surface current (e) of the structural unit at three resonant frequencies.

    图 3  不同旋转角α对应的(a)八个超表面编码粒子、(b)交叉偏振反射率和(c)反射相位

    Fig. 3.  (a) Eight coded particles and the corresponding cross-polarized amplitude reflection (b) and phase (c) at different rotation angles α

    图 4  1.5 THz 线偏振波法向入射下1-bit编码超表面的远场散射图 (a) 3D远场散射图; (b) 2D远场散射图

    Fig. 4.  Far-field scattering patterns of 1-bit encoded metasurface under normal incidence of LP waves at 1.5 THz: (a) 3D far-field scattering pattern; (b) 2D far-field scattering map.

    图 5  1.5 THz线偏振(LP)波法向入射下2-bit编码超表面的远场散射图, 其中(a) 3D远场散射, (b) 2D远场散射; 1.5 THz圆偏振(CP)波法向入射下2-bit编码超表面2D远场散射图, 其中(c)右旋圆偏振(RCP), (d)左旋圆偏振(LCP)

    Fig. 5.  Far-field scattering patterns of 2-bit encoded metasurface under normal incidence of LP waves at 1.5 THz: (a) 3D far-field scattering pattern; (b) 2D far-field scattering map. 2D far-field scattering patterns of 2-bit encoded metasurface under normal incidence of CP waves at 1.5 THz: (c) RCP; (d) LCP.

    图 6  LP波法向入射下3-bit编码超表面和相同尺寸的裸金属板的远场散射图 (a) 1.50 THz处编码超表面的3D远场散射图; (b) 1.60 THz处编码超表面的3D远场散射图; (c) 1.70 THz处编码超表面的3D远场散射图; (d) 1.80 THz处编码超表面的3D远场散射图; (e) 1.50 THz处编码超表面的2D远场散射图; (f) 1.60 THz处编码超表面的2D远场散射图; (g) 1.70 THz处编码超表面的2D远场散射图; (h) 1.80 THz处编码超表面的2D远场散射图; (i) 1.50 THz处裸金属板的2D远场散射图; (j) 1.60 THz处裸金属板的2D远场散射图; (k) 1.70 THz处裸金属板的2D远场散射图; (l) 1.80 THz处裸金属板的2D远场散射图

    Fig. 6.  Far-field scattering patterns of a 3-bit encoded metasurface and a bare metal plate under normal incidence of LP waves: 3D far-field scattering pattern of the encoded metasurface at 1.50 (a), 1.60 (b), 1.70 (c) and 1.8 THz (d); 2D far-field scattering pattern of the encoded metasurface at 1.50 (e), 1.60 (f), 1.70 (g) and 1.80 THz (h); 2D far-field scattering pattern of bare metal plate at 1.50 (i), 1.60 (j), 1.70 (k) and 1.80 THz (l).

    图 7  各个编码单元的反射特性测试结果 (a) 时域波形图; (b) FFT频谱图; (c) 反射率; (d) 反射相移

    Fig. 7.  Reflection characteristics of each encoding unit: (a) Time-domain waveforms; (b) FFT spectra; (c) reflectivity; (d) phase shift.

    图 8  不同反射角度下2-bit编码超表面的反射特性测试结果 (a)时域波形图; (b)时域信号最大值Ep; (c) 1.00, 1.50和1.80 THz的振幅反射率.

    Fig. 8.  Reflection characteristics of 2-bit coded metasurface under different reflection angles: (a) Time-domain waveforms; (b) the maximum value Ep of the time-domain signal; (c) the frequency components at 1.00, 1.50 and 1.80 THz.

  • [1]

    Chen M L, Jiang L J, Sha W 2017 IEEE Antennas. Wirel. Propag. Lett. 17 110Google Scholar

    [2]

    Fu X, Liang H W, Li J T 2021 Front. Optoelectron 14 170Google Scholar

    [3]

    Ali S, Davies J R, Mendonca J T 2010 Phys. Rev. Lett. 105 035001Google Scholar

    [4]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [5]

    Gollub J N, Yurduseven O, Trofatter K P, Arnitz D, Lmani M F, Sleasman T, Boyarsky M, Rose A 2017 Sci. Rep. 7 42650Google Scholar

    [6]

    Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B 2018 Nanoscale 10 4237Google Scholar

    [7]

    Cai T, Wang G M, Xu H X, Tang S W, Li H P, Liang J G, Zhuang Y Q 2017 Annalen der Physik 530 1700321Google Scholar

    [8]

    Wang X, Ding J, Zheng B, An S, Zhai G, Zhang H 2018 Sci. Rep. 8 1876Google Scholar

    [9]

    Chen, Z, Hui D, Xiong Q, Chen L 2018 Appl. Phys. A 124 281Google Scholar

    [10]

    Lei L, Li S, Huang H, Tao K, Xu P 2018 Opt. Express 26 5686Google Scholar

    [11]

    Ghosh S, Lim S 2018 Sci. Rep. 8 10169Google Scholar

    [12]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [13]

    Biswas S R, Gutiérrez C E, Nemilentsau A, Lee I, Oh S, Avouris P, Low T 2018 Phys. Rev. Appl. 9 3034021Google Scholar

    [14]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M 2018 Opt. Commun. 412 1Google Scholar

    [15]

    Liu M Z, Zhu W Q, Huo P C, Feng L, Song M W, Zhang C, Chen L, Lezec Henri J, Lu Y Q, Agrawal A, Xu T 2021 Light: Sci. Appl. 10 107Google Scholar

    [16]

    Hosseininejad S E, Rouhi K, Neshat M, Aparicio A C, Alarcon E 2019 IEEE Trans. Nanotechnol 18 734Google Scholar

    [17]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [18]

    Qi Y, Zhang Y, Liu C, Zhang T, Wang X 2020 Results Phys. 16 103012Google Scholar

    [19]

    Hu J, Bandyopadhyay S, Liu Y, Shao L 2021 Front. Phys. 8 586087Google Scholar

    [20]

    Yao J, Lin R, Chen M K, Tsai D P 2023 Advanced Photonics 5 024001Google Scholar

    [21]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [22]

    Zhang L, Wu R Y, Bai G D, Wu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [23]

    Li F F, Fang W, Chen P, Poo Y 2018 Opt. Express 26 33878Google Scholar

    [24]

    Wu R Y, Zhang L, Bao L, Wu L W, Ma Q, Bai G D, Wu H T, Cui T J 2019 Adv. Opt. Mater. 7 1801429Google Scholar

    [25]

    Bai G D, Ma Q, Shahid I, Bao L, Jing H B, Zhang L, Wu H T, Wu R Y, Zhang H C, Yang C, Cui T J 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [26]

    Fu X M, Wang J F, Fan Y, Yang J, Li Y F, Yan M B, Zhang J Q, Qu S B 2019 J. Phys. D: Appl. Phys. 52 115103Google Scholar

    [27]

    Wang J, Jiang Y 2018 Opt. Commun. 416 125Google Scholar

    [28]

    Fang Q H, Wu L P, Pan W K, Li M H, Dong J F 2020 Appl. Phys. Lett. 117 074102Google Scholar

    [29]

    Kiani M, Tayarni M, Momeni A, Rajabalipanah H, Abdolali A 2020 Opt. Express 28 5410Google Scholar

    [30]

    Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Emerg. Sel. Topics Circuits Syst. 10 20Google Scholar

    [31]

    Qi Y P, Zhang B H, Liu C Q, Deng X Y 2020 IEEE Access 8 116675Google Scholar

    [32]

    Zheng C, Li J, Wang G, Li J, Wang S, Li M, Zhao H, Yue Z, Zhang Y, Zhang Y, Yao J 2021 Nanophotonics 10 1347Google Scholar

    [33]

    Tan Z Y, Fan F, Chang S J 2020 IEEE J. Sel. Top. Quantum Electron. 26 1Google Scholar

    [34]

    Zhao T, Jing X, Tang X, Bie X, Luo T, Gan H, He Y, Li C, Hong Z 2021 Opt. Laser Eng. 141 106556Google Scholar

    [35]

    Yu N, Genevet P, Kats M A, et al. 2011 Science 334 333Google Scholar

    [36]

    张腾, 王丽艳, 王新源, 崔彬, 杨玉平 2019 红外与毫米波学报 38 733Google Scholar

    Zhang T, Wang L, Wang X, Cui B, Yang Y 2019 J. Infrared Millim. Waves 38 733Google Scholar

    [37]

    Wang Q, Plum E, Yang Q, Zhang X, Xu Q, Xu Y, Han J, Zhang W 2018 Light: Sci. Appl. 7 25Google Scholar

    [38]

    Tan Y, Qu K, Chen K, et al. 2022 Adv. Opt. Mater. 10 2200565Google Scholar

  • [1] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [8] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [9] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [10] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应. 物理学报, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [11] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [12] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [13] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [14] 张解放, 戴朝卿. 非自治物质畸形波的传播操控. 物理学报, 2016, 65(5): 050501. doi: 10.7498/aps.65.050501
    [15] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [16] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [17] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [18] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [19] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  872
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-08-28
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回