Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force

Wu Wen-Tang Hong Yan-Ji Fan Bao-Chun

Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force

Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun
PDF
Get Citation
  • Turbulence control and drag reduction in a channel flow by using a steadily distributed spanwise Lorentz force are investigated numerically via a direct numerical simulation (DNS). The characteristics of controlled flow fields and vortex structures are described. Meanwhile, the mechanisms of turbulence suppression and drag reduction by the Lorentz force are also discussed. Calculated results indicate that: (1) The shear layers with a arge gradient of spanwise velocity are created in the laminar boundary layer induced by the spanwise Lorentz force, where the streamwise vortices are easily generated by perturbations. (2) Under the action of the distributed Lorentz force with proper control parameters, only periodically well-organized streamwise vortices are observed in the near-wall region of the turbulent channel flow. (3) After controlling, the averaged lift height of inclined streamwise vortices is reduced significantly as compared with the uncontrolled turbulence flow, resulting in the reduction of the burst strength and subsequent drag reduction on the wall.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172140).
    [1]

    Kim J 2011 Phil. Trans. R. Soc. A 369 1396

    [2]

    Hasegawa H, Kasagi N 2011 J. Fluid Mech. 683 57

    [3]

    Deng B Q, Xu C X 2012 J. Fluid Mech. 710 234

    [4]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 59 6786 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 59 6786]

    [5]

    David G, Torsten S, Chan Y S 2012 Phys. Fluids 24 077102

    [6]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [7]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [8]

    Du Y, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [9]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [10]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [11]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6777]

    [12]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [13]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Lin J Z, Li Jun, Zhang W F 2005 Chin. Phys. 14 2529

    [16]

    Yang Z X, Cui G X, Xu C X, Zhang Z S, Shao L 2012 Chin. Phys. Lett. 29 054702

    [17]

    Zhang H Q, Lu H, Wang B, Wang X L 2011 Chin. Phys. Lett. 28 084703

    [18]

    Huang L P, Fan B C, Mei D J 2012 Theor. Appl. Mech. Lett. 2 012005

    [19]

    Du Y, Karniadakis G E 2000 Science 288 1230

    [20]

    Xu P, Choi K S 2007 Flow Control and MEMS (Springer, Berlin) p259

    [21]

    Huang L P, Fan B C, Dong G 2011 Acta Mech. Sin. 43 277 (in Chinese) [黄乐萍, 范宝春, 董刚 2011 力学学报 43 277]

    [22]

    Guo C F, Fan B C 2013 J. Ship Mech. 17 336 (in Chinese) [郭春风, 范宝春 2013 船舶力学 17 336]

    [23]

    Huang L P, Fan B C, Dong G 2010 Phys. Fluids 22 015103

    [24]

    Kravchenko A G, Choi H, Moin P 1993 Phys. Fluids 5 3307

  • [1]

    Kim J 2011 Phil. Trans. R. Soc. A 369 1396

    [2]

    Hasegawa H, Kasagi N 2011 J. Fluid Mech. 683 57

    [3]

    Deng B Q, Xu C X 2012 J. Fluid Mech. 710 234

    [4]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 59 6786 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 59 6786]

    [5]

    David G, Torsten S, Chan Y S 2012 Phys. Fluids 24 077102

    [6]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [7]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [8]

    Du Y, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [9]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [10]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [11]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6777]

    [12]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [13]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Lin J Z, Li Jun, Zhang W F 2005 Chin. Phys. 14 2529

    [16]

    Yang Z X, Cui G X, Xu C X, Zhang Z S, Shao L 2012 Chin. Phys. Lett. 29 054702

    [17]

    Zhang H Q, Lu H, Wang B, Wang X L 2011 Chin. Phys. Lett. 28 084703

    [18]

    Huang L P, Fan B C, Mei D J 2012 Theor. Appl. Mech. Lett. 2 012005

    [19]

    Du Y, Karniadakis G E 2000 Science 288 1230

    [20]

    Xu P, Choi K S 2007 Flow Control and MEMS (Springer, Berlin) p259

    [21]

    Huang L P, Fan B C, Dong G 2011 Acta Mech. Sin. 43 277 (in Chinese) [黄乐萍, 范宝春, 董刚 2011 力学学报 43 277]

    [22]

    Guo C F, Fan B C 2013 J. Ship Mech. 17 336 (in Chinese) [郭春风, 范宝春 2013 船舶力学 17 336]

    [23]

    Huang L P, Fan B C, Dong G 2010 Phys. Fluids 22 015103

    [24]

    Kravchenko A G, Choi H, Moin P 1993 Phys. Fluids 5 3307

  • [1] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [2] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
    [3] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [4] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • Citation:
Metrics
  • Abstract views:  434
  • PDF Downloads:  451
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2013
  • Accepted Date:  20 November 2013
  • Published Online:  05 March 2014

Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force

  • 1. National Key Laboratory of Laser Propulsion and Application, Academy of Equipment, Beijing 101416, China;
  • 2. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11172140).

Abstract: Turbulence control and drag reduction in a channel flow by using a steadily distributed spanwise Lorentz force are investigated numerically via a direct numerical simulation (DNS). The characteristics of controlled flow fields and vortex structures are described. Meanwhile, the mechanisms of turbulence suppression and drag reduction by the Lorentz force are also discussed. Calculated results indicate that: (1) The shear layers with a arge gradient of spanwise velocity are created in the laminar boundary layer induced by the spanwise Lorentz force, where the streamwise vortices are easily generated by perturbations. (2) Under the action of the distributed Lorentz force with proper control parameters, only periodically well-organized streamwise vortices are observed in the near-wall region of the turbulent channel flow. (3) After controlling, the averaged lift height of inclined streamwise vortices is reduced significantly as compared with the uncontrolled turbulence flow, resulting in the reduction of the burst strength and subsequent drag reduction on the wall.

Reference (24)

Catalog

    /

    返回文章
    返回