搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生射流孔形状减阻性能数值模拟及实验研究

李芳 赵刚 刘维新 张殊 毕红时

仿生射流孔形状减阻性能数值模拟及实验研究

李芳, 赵刚, 刘维新, 张殊, 毕红时
PDF
导出引用
导出核心图
  • 针对横流中的侧向射流能够减小仿生射流表面摩擦阻力问题, 建立仿生射流表面模型, 利用SST k-湍模型对不同射流孔形状的仿生射流表面模型进行数值模拟, 并对数值模拟结果进行了实验验证. 结果表明: 当射流孔的流向长度和展向长度不变时, 3号模型的折线形射流孔减阻效果最好; 将折线形射流孔简化为圆弧形, 当r=35 mm时, 减阻率随着射流速度的增大而增大, 当r=4 mm时减阻效果最好, 最大减阻率为9.51%. 减阻原因: 通过射流孔向横向主流场中注入射流流体, 改变了射流表面附近边界层的流场结构, 使得边界层黏性底层厚度增加, 垂直于射流表面的法向速度梯度减小, 从而减小了壁面剪应力; 低速的射流流体被封锁在边界层内, 降低了高速流体对壁面的扫掠, 达到了减阻目的.
    • 基金项目: 国家自然科学基金(批准号: 51275102)资助的课题.
    [1]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [2]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [3]

    Han Z W, Xu X X, Ren L Q 2005 Tribology 25 578 (in Chinese) [韩志武, 许小侠, 任露泉 2005 摩擦学学报 25 578]

    [4]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [5]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [6]

    Tian L M, Ren L Q, Li Q P, Han Z W, Jiang X 2007 J. Bionic. Eng. 4 109

    [7]

    Lim H C, Lee S J 2004 Fluid Dyn. Res. 35 107

    [8]

    Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]

    [9]

    Walsh M J 1983 AIAA J. 21 485

    [10]

    Cai J S, Liu Q H 2010 Acta Aerodynamica Sinica 28 553 (in Chinese) [蔡晋生, 刘秋洪 2010 空气动力学学报 28 553]

    [11]

    Venukumar B, Jagadeesh G, Reddy K P J 2006 Phys. Fluids 18 18101

    [12]

    Jiang G Q, Ren X W, Li W 2010 Advances in Water Science 21 307 (in Chinese) [姜国强, 任秀文, 李炜 2010 水科学进展 21 307]

    [13]

    Robert P W, Frank C T 1979 J. aircraft 16 701

    [14]

    Matthew J B, Joseph A S, Larry A R 1997 J. Propul. Power 13 257

    [15]

    Zhang D W, Wang Q, Hu H Y 2012 Journal of Aerospace Power 27 2378 (in Chinese) [张丁午, 王强, 胡海洋 2012 航空动力学报 27 2378]

    [16]

    Gu Y Q, Zhao G, Zhao H L, Zheng J X, Wang F, Xiao L, Liu W B 2012 Acta Armamentarii 33 1230 (in Chinese) [谷云庆, 赵刚, 赵华琳, 郑金兴, 王飞, 肖磊, 刘文博 2012 兵工学报 33 1230]

    [17]

    Li F, Zhao G, Liu W X, Sun Z Z 2014 Journal of Basic Science and Engineering 22 574 (in Chinese) [李芳, 赵刚, 刘维新, 孙壮志 2014 应用基础与工程科学学报 22 574]

    [18]

    Menter F R 1994 AIAA J. 32 1598

  • [1]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [2]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [3]

    Han Z W, Xu X X, Ren L Q 2005 Tribology 25 578 (in Chinese) [韩志武, 许小侠, 任露泉 2005 摩擦学学报 25 578]

    [4]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [5]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [6]

    Tian L M, Ren L Q, Li Q P, Han Z W, Jiang X 2007 J. Bionic. Eng. 4 109

    [7]

    Lim H C, Lee S J 2004 Fluid Dyn. Res. 35 107

    [8]

    Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]

    [9]

    Walsh M J 1983 AIAA J. 21 485

    [10]

    Cai J S, Liu Q H 2010 Acta Aerodynamica Sinica 28 553 (in Chinese) [蔡晋生, 刘秋洪 2010 空气动力学学报 28 553]

    [11]

    Venukumar B, Jagadeesh G, Reddy K P J 2006 Phys. Fluids 18 18101

    [12]

    Jiang G Q, Ren X W, Li W 2010 Advances in Water Science 21 307 (in Chinese) [姜国强, 任秀文, 李炜 2010 水科学进展 21 307]

    [13]

    Robert P W, Frank C T 1979 J. aircraft 16 701

    [14]

    Matthew J B, Joseph A S, Larry A R 1997 J. Propul. Power 13 257

    [15]

    Zhang D W, Wang Q, Hu H Y 2012 Journal of Aerospace Power 27 2378 (in Chinese) [张丁午, 王强, 胡海洋 2012 航空动力学报 27 2378]

    [16]

    Gu Y Q, Zhao G, Zhao H L, Zheng J X, Wang F, Xiao L, Liu W B 2012 Acta Armamentarii 33 1230 (in Chinese) [谷云庆, 赵刚, 赵华琳, 郑金兴, 王飞, 肖磊, 刘文博 2012 兵工学报 33 1230]

    [17]

    Li F, Zhao G, Liu W X, Sun Z Z 2014 Journal of Basic Science and Engineering 22 574 (in Chinese) [李芳, 赵刚, 刘维新, 孙壮志 2014 应用基础与工程科学学报 22 574]

    [18]

    Menter F R 1994 AIAA J. 32 1598

  • [1] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [2] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [3] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [4] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [5] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [6] Chaoqun Liu, 陈林, 唐登斌. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [7] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [8] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [9] 张寅超, 张改霞, 赵曰峰, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [10] 李存标, 龚安龙, 李睿劬. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [11] 李存标, 李睿劬. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [12] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [13] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [14] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [15] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [16] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [17] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [18] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [19] 耿少飞, 唐德礼, 赵杰, 邱孝明. 圆柱形阳极层霍尔等离子体加速器的质点网格方法模拟. 物理学报, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [20] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
  • 引用本文:
    Citation:
计量
  • 文章访问数:  725
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-25
  • 修回日期:  2014-08-18
  • 刊出日期:  2015-02-05

仿生射流孔形状减阻性能数值模拟及实验研究

  • 1. 哈尔滨工程大学机电工程学院, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号: 51275102)资助的课题.

摘要: 针对横流中的侧向射流能够减小仿生射流表面摩擦阻力问题, 建立仿生射流表面模型, 利用SST k-湍模型对不同射流孔形状的仿生射流表面模型进行数值模拟, 并对数值模拟结果进行了实验验证. 结果表明: 当射流孔的流向长度和展向长度不变时, 3号模型的折线形射流孔减阻效果最好; 将折线形射流孔简化为圆弧形, 当r=35 mm时, 减阻率随着射流速度的增大而增大, 当r=4 mm时减阻效果最好, 最大减阻率为9.51%. 减阻原因: 通过射流孔向横向主流场中注入射流流体, 改变了射流表面附近边界层的流场结构, 使得边界层黏性底层厚度增加, 垂直于射流表面的法向速度梯度减小, 从而减小了壁面剪应力; 低速的射流流体被封锁在边界层内, 降低了高速流体对壁面的扫掠, 达到了减阻目的.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回