Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure

Wang Xian-Bin Zhao Zheng-Ping Feng Zhi-Hong

Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure

Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong
PDF
Get Citation
  • By the self-consistent solution of the Schrödinger and poisson equations, the effects of GaN channel layer, AlGaN back barrier layer with and without Si doping and AlN interlayer on two-dimensional electron gas in N-polar GaN/AlGaN heterostructure are systematically studied. The results indicate that the increases of the thickness values of GaN channel layer and AlGaN back barrier layer and Al content value can improve the density of 2DEG to a certain degree, and the influences of different Si doping forms on 2DEG sheet density are not the same, also the confinement of 2DEG could be strengthened by increasing Al content value and thickness value of the AlGaN barrier layer. The AlN interlayer is a comparatively outstanding one in improving the performance of the 2DEG such as the 2DEG sheet density and confinement. When GaN channel layer thickness is less than 5 nm, there is no 2DEG in the simulation, when it exceeds 20 nm the 2DEG sheet density tends to be saturated. 2DEG has a tendency to be saturated when the thickness value of AlGaN back barrier is more than 40 nm. 2DEG sheet densities with uniform doping and delta doping in AlGaN back barrier are saturated when the doping concentration is more than 5×1019 cm-3. The 2DEG sheet density could be increased from 0.93×1013 cm-2 without AlN interlayer to 1.17×1013 cm-2 with 2 nm AlN interlayer.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306113).
    [1]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Ng W T 2013 Chin. Phys. B 22 026103

    [2]

    Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501

    [3]

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756 (in Chinese) [孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756]

    [4]

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320 (in Chinese) [孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320]

    [5]

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409 (in Chinese) [张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409]

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G 1999 J. Appl. Phys. 85 3222

    [7]

    Denninghoff D, Lu J, Laurent M, Ahmadi E 2012 Proceedings of the 70th Device Research Conference University Park, TX, USA, June 18-20, 2012 p151

    [8]

    Nidhi, Dasgupta S, Lu J, Speck J S, Mishra U K 2012 Elec. Dev. Lett. 33 961

    [9]

    Kolluri S, Keller S, Brown D, Gupta G 2010 J. Appl. Phys. 108 119902

    [10]

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202]

    [11]

    Rajan S, Chini A, Wong M H, Speck J S, Mishra U K 2007 J. Appl. Phys. 102 044501

    [12]

    Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G, Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese) [李彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩军, 刘莹, 高国, 沈光地 2007 物理学报 56 1036]

  • [1]

    Xie G, Tang C, Wang T, Guo Q, Zhang B, Sheng K, Ng W T 2013 Chin. Phys. B 22 026103

    [2]

    Kong X, Wei K, Liu G G, Liu X Y 2012 Chin. Phys. B 21 128501

    [3]

    Kong Y C, Zheng Y D, Chu R M, Gu S L 2003 Acta Phys. Sin. 52 1756 (in Chinese) [孔月婵, 郑有炓, 储荣明, 顾书林 2003 物理学报 52 1756]

    [4]

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320 (in Chinese) [孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320]

    [5]

    Zhang J C, Zheng P T, Dong Z D, Duan H T, Ni J Y, Zhang J F, Hao Y 2009 Acta Phys. Sin. 58 3409 (in Chinese) [张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃 2009 物理学报 58 3409]

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G 1999 J. Appl. Phys. 85 3222

    [7]

    Denninghoff D, Lu J, Laurent M, Ahmadi E 2012 Proceedings of the 70th Device Research Conference University Park, TX, USA, June 18-20, 2012 p151

    [8]

    Nidhi, Dasgupta S, Lu J, Speck J S, Mishra U K 2012 Elec. Dev. Lett. 33 961

    [9]

    Kolluri S, Keller S, Brown D, Gupta G 2010 J. Appl. Phys. 108 119902

    [10]

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zheng Y D 2013 Acta Phys. Sin. 62 150202 (in Chinese) [张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202]

    [11]

    Rajan S, Chini A, Wong M H, Speck J S, Mishra U K 2007 J. Appl. Phys. 102 044501

    [12]

    Li T, Wang H B, Liu J P, Niu N H, Zhang N G, Xing Y H, Han J, Liu Y, Gao G, Shen G D 2007 Acta Phys. Sin. 56 1036 (in Chinese) [李彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩军, 刘莹, 高国, 沈光地 2007 物理学报 56 1036]

  • [1] Feng Fei-Fei, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi, Qiu Chong. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Physica Sinica, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [2] Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia, Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [3] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [4] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [5] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming, Liu Jian, Liu Xin-Yu. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [6] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [7] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [8] Zhang Yang, Gu Shu-Lin, Ye Jian-Dong, Huang Shi-Min, Gu Ran, Chen Bin, Zhu Shun-Ming, Zhen You-Dou. Two-dimensional electron Gas in ZnMgO/ZnO heterostructures. Acta Physica Sinica, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [9] JIANG CHUN-PING, GUI YONG-SHENG, ZHENG GUO-ZHEN, MA ZHI-XUN, LI BIAO, GUO SHAO-L ING, CHU JUN-HAO. STUDY ON TRANSPORT PROPERTIES OF TWO-DIMENSIONAL ELECTRON GASES IN n-Hg0.80 Mg0.20Te INTERFACE ACCUMULATION LAYER. Acta Physica Sinica, 2000, 49(9): 1804-1808. doi: 10.7498/aps.49.1804
    [10] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
  • Citation:
Metrics
  • Abstract views:  874
  • PDF Downloads:  671
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2013
  • Accepted Date:  16 January 2014
  • Published Online:  20 April 2014

Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure

  • 1. College of Information Engineering, Hebei University of Technology, Tianjin 300130, China;
  • 2. State Key Laboratory of ASIC and System, Shijiazhuang 050051, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61306113).

Abstract: By the self-consistent solution of the Schrödinger and poisson equations, the effects of GaN channel layer, AlGaN back barrier layer with and without Si doping and AlN interlayer on two-dimensional electron gas in N-polar GaN/AlGaN heterostructure are systematically studied. The results indicate that the increases of the thickness values of GaN channel layer and AlGaN back barrier layer and Al content value can improve the density of 2DEG to a certain degree, and the influences of different Si doping forms on 2DEG sheet density are not the same, also the confinement of 2DEG could be strengthened by increasing Al content value and thickness value of the AlGaN barrier layer. The AlN interlayer is a comparatively outstanding one in improving the performance of the 2DEG such as the 2DEG sheet density and confinement. When GaN channel layer thickness is less than 5 nm, there is no 2DEG in the simulation, when it exceeds 20 nm the 2DEG sheet density tends to be saturated. 2DEG has a tendency to be saturated when the thickness value of AlGaN back barrier is more than 40 nm. 2DEG sheet densities with uniform doping and delta doping in AlGaN back barrier are saturated when the doping concentration is more than 5×1019 cm-3. The 2DEG sheet density could be increased from 0.93×1013 cm-2 without AlN interlayer to 1.17×1013 cm-2 with 2 nm AlN interlayer.

Reference (12)

Catalog

    /

    返回文章
    返回