Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research of four-wave mixing and soliton effects in a photonic crystal fiber pumped femtosecond pulses at the wavelength located normal dispersion regime away from the zero dispersion point

Li Jian-She Li Shu-Guang Zhao Yuan-Yuan Han Ying Chen Hai-Liang Han Xiao-Ming Zhou Gui-Yao

Experimental research of four-wave mixing and soliton effects in a photonic crystal fiber pumped femtosecond pulses at the wavelength located normal dispersion regime away from the zero dispersion point

Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Han Ying, Chen Hai-Liang, Han Xiao-Ming, Zhou Gui-Yao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we show experimentally that a pair of signal wave and idler wave bands is generated by four-wave mixing, and a pair of optical solitons and dispersion wave bands is induced by intrapulse Raman scattering and non-soliton radiation, and we also observe the power saturation phenomenon of the photonic crystal fiber (PCF) by using the incident femtosecond pulses in normal dispersion region away from the zero-dispersion wavelength of the PCF. The dispersion and nonlinear characteristics of the PCF are studied by the finite element method. The possible positions of the signal wave band and the idler wave band that is generated in the fiber satisfying the phase-matching condition are simulated by four-wave mixing phase matching, the results are in good agreement with the experimental results and show that even the pump laser pulse in the normal dispersion region can also produce the PCF four-wave mixing and optical solitons effects. In the present study it also revealed that the four-wave mixing experiment is generated by the fourth-order dispersion parameter β4, and the origins of optical solitons and dispersion wave bands generation are further explained.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178026), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035), and the Science and Technology Research and Development Plan of Qinhuangdao, China (Grant No. 201101A117).
    [1]

    Jia Y Q, Yan P G, L K C, Zhang T Q, Zhu X N 2006 Acta Phys. Sin. 55 1809 (in Chinese) [贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农 2006 物理学报 55 1809]

    [2]

    Wei Y H, Zhan Y, Zheng Y 2013 Laser J. 34 8 (in Chinese) [魏玉花, 詹仪, 郑义 2013 激光杂志 34 8]

    [3]

    Song Y R, Zhu J Y, Zhang X 2011 Acta Sin. Quant. Opt. 17 237 (in Chinese) [宋晏蓉, 朱建银, 张晓 2011 量子光学学报 17 237]

    [4]

    Golovchenko E A, Dianov E M, Prokhorov A M, Serkin V N 1985 JETP Lett. 42 87

    [5]

    Roy S, Bhadra S K, Agrawal G P 2009 Opt. Lett. 34 2072

    [6]

    Roy S, Bhadra S K, Saitoh K, Koshiba M, Agrawal G P 2011 Opt. Express 19 10443

    [7]

    Chang G Q, Chen L J, Kärtner F X 2011 Opt. Express 19 6635

    [8]

    Zhang L, Yang S G, Chen H W, Chen M H, Xie S Z 2013 18th Opto-Electronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching Kyoto, Japan, June 30-July 4, 2013 WS4-4

    [9]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602

    [10]

    Duan L, Liu X, Wang L, Mao D, Wang G 2011 Laser Phys. 21 1813

    [11]

    Jin A J, Wang Z F, Hou J, Wang Y B, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 王彦斌, 姜宗福 2012 物理学报 61 124211]

    [12]

    Mussot A, Lantz E, Maillotte H, Sylvestre T 2004 Opt. Express 12 2838

    [13]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2003 Opt. Express 11 2697

    [14]

    Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]

    [15]

    Li S G, Zhu X P, Xue J R 2013 Acta Phys. Sin. 62 204206 (in Chinese) [李曙光, 朱星平, 薛建荣 2013 物理学报 62 204206]

    [16]

    Zhu X P, Li S G, Du Y, Han Y, Zhang W Q, Ruan Y L, Ebendorff-Heidepriem H, Afshar H, Monro T M 2013 Chin. Phys. B 22 014215

    [17]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201

    [18]

    Shen X W, Yu C X, Sang X Z, Yuan J H, Han Y, Xia C M, Hou L T, Rao F, Xia M, Yin X L 2012 Acta Phys. Sin. 61 044203 (in Chinese) [申向伟, 余重秀, 桑新柱, 苑金辉, 韩颖, 夏长明, 侯蓝田, 饶芬, 夏民, 尹霄丽 2012 物理学报 61 044203]

    [19]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [20]

    Herzog A, Shamir A, Ishaaya A A 2012 Opt. Lett. 37 82

    [21]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [22]

    Kerbage C, Eggleton B J 2002 Opt. Express 10 246

    [23]

    Vogel E M, Weber M J, Krol D M 1991 Phys. Chem. Glasses 32 231

    [24]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735 (in Chinese) [延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生 2008 物理学报 57 5735]

    [25]

    Marhic M E, Wong K K Y, Kazovsky L G 2004 IEEE J. Sel. Top. Quant. 10 1133

    [26]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [27]

    Agrawal G P 2009 Nonlinear Fiber Optics (4th Ed.) (New York: Elsevier) pp383, 464-467

    [28]

    Wadsworth W J, Joly N, Knight J C, Birks T A, Biancalana F, Russell P St J 2004 Opt. Express 12 299

    [29]

    Wong G K L, Chen A Y H, Murdoch S G, Leonhardt R, Harvey J D, Joly N Y, Knight J C, Wadsworth W J, Russell P St J 2005 J. Opt. Soc. Am. B 22 2505

    [30]

    McKinstrie M, Yu C J, Agrawal G P 1995 Phys. Rev. E 52 1072

    [31]

    Liu B W, Hu M L, Fang X H, Li Y F, Chai L, Wang C Y, Tong W J, Luo J, Voronin Aleksandr A, Zheltikov Aleksei M 2008 Opt. Express 16 14987

    [32]

    Liu B W 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [刘博文 2009 博士学位论文 (天津: 天津大学)]

  • [1]

    Jia Y Q, Yan P G, L K C, Zhang T Q, Zhu X N 2006 Acta Phys. Sin. 55 1809 (in Chinese) [贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农 2006 物理学报 55 1809]

    [2]

    Wei Y H, Zhan Y, Zheng Y 2013 Laser J. 34 8 (in Chinese) [魏玉花, 詹仪, 郑义 2013 激光杂志 34 8]

    [3]

    Song Y R, Zhu J Y, Zhang X 2011 Acta Sin. Quant. Opt. 17 237 (in Chinese) [宋晏蓉, 朱建银, 张晓 2011 量子光学学报 17 237]

    [4]

    Golovchenko E A, Dianov E M, Prokhorov A M, Serkin V N 1985 JETP Lett. 42 87

    [5]

    Roy S, Bhadra S K, Agrawal G P 2009 Opt. Lett. 34 2072

    [6]

    Roy S, Bhadra S K, Saitoh K, Koshiba M, Agrawal G P 2011 Opt. Express 19 10443

    [7]

    Chang G Q, Chen L J, Kärtner F X 2011 Opt. Express 19 6635

    [8]

    Zhang L, Yang S G, Chen H W, Chen M H, Xie S Z 2013 18th Opto-Electronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching Kyoto, Japan, June 30-July 4, 2013 WS4-4

    [9]

    Akhmediev N, Karlsson M 1995 Phys. Rev. A 51 2602

    [10]

    Duan L, Liu X, Wang L, Mao D, Wang G 2011 Laser Phys. 21 1813

    [11]

    Jin A J, Wang Z F, Hou J, Wang Y B, Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese) [靳爱军, 王泽锋, 侯静, 王彦斌, 姜宗福 2012 物理学报 61 124211]

    [12]

    Mussot A, Lantz E, Maillotte H, Sylvestre T 2004 Opt. Express 12 2838

    [13]

    Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J, Coen S, Windeler R 2003 Opt. Express 11 2697

    [14]

    Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]

    [15]

    Li S G, Zhu X P, Xue J R 2013 Acta Phys. Sin. 62 204206 (in Chinese) [李曙光, 朱星平, 薛建荣 2013 物理学报 62 204206]

    [16]

    Zhu X P, Li S G, Du Y, Han Y, Zhang W Q, Ruan Y L, Ebendorff-Heidepriem H, Afshar H, Monro T M 2013 Chin. Phys. B 22 014215

    [17]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201

    [18]

    Shen X W, Yu C X, Sang X Z, Yuan J H, Han Y, Xia C M, Hou L T, Rao F, Xia M, Yin X L 2012 Acta Phys. Sin. 61 044203 (in Chinese) [申向伟, 余重秀, 桑新柱, 苑金辉, 韩颖, 夏长明, 侯蓝田, 饶芬, 夏民, 尹霄丽 2012 物理学报 61 044203]

    [19]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [20]

    Herzog A, Shamir A, Ishaaya A A 2012 Opt. Lett. 37 82

    [21]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [22]

    Kerbage C, Eggleton B J 2002 Opt. Express 10 246

    [23]

    Vogel E M, Weber M J, Krol D M 1991 Phys. Chem. Glasses 32 231

    [24]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735 (in Chinese) [延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生 2008 物理学报 57 5735]

    [25]

    Marhic M E, Wong K K Y, Kazovsky L G 2004 IEEE J. Sel. Top. Quant. 10 1133

    [26]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [27]

    Agrawal G P 2009 Nonlinear Fiber Optics (4th Ed.) (New York: Elsevier) pp383, 464-467

    [28]

    Wadsworth W J, Joly N, Knight J C, Birks T A, Biancalana F, Russell P St J 2004 Opt. Express 12 299

    [29]

    Wong G K L, Chen A Y H, Murdoch S G, Leonhardt R, Harvey J D, Joly N Y, Knight J C, Wadsworth W J, Russell P St J 2005 J. Opt. Soc. Am. B 22 2505

    [30]

    McKinstrie M, Yu C J, Agrawal G P 1995 Phys. Rev. E 52 1072

    [31]

    Liu B W, Hu M L, Fang X H, Li Y F, Chai L, Wang C Y, Tong W J, Luo J, Voronin Aleksandr A, Zheltikov Aleksei M 2008 Opt. Express 16 14987

    [32]

    Liu B W 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [刘博文 2009 博士学位论文 (天津: 天津大学)]

  • [1] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [2] Wang Yan-Bin, Xiong Chun-Le, Hou Jing, Lu Qi-Sheng, Peng Yang, Chen Zi-Lun. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers. Acta Physica Sinica, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [3] Hui Zhan-Qiang, Zhang Jian-Guo. All-optical format conversion from non-return-to-zero to return-to-zero based on dual-pump four-wave mixing in photonic crystal fiber. Acta Physica Sinica, 2013, 62(8): 084209. doi: 10.7498/aps.62.084209
    [4] Zhao Xing-Tao, Zheng Yi, Han Ying, Zhou Gui-Yao, Hou Zhi-Yun, Shen Jian-Ping, Wang Chun, Hou Lan-Tian. Generation of visible and infrared broadband dispersive waves in photonic crystal fiber cladding. Acta Physica Sinica, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [5] Wang Wei-Bin, Yang Hua, Tang Ping-Hua, Han Fang. Soliton trapping of dispersive waves during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [6] Hui Zhan-Qiang, Zhang Jian-Guo. All-optical format conversion from non-return-to-zero to return-to-zero based on four-wave mixing in photonic crystal fiber. Acta Physica Sinica, 2012, 61(1): 014217. doi: 10.7498/aps.61.014217
    [7] Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Liu Qiang, Fan Zhen-Kai, Wang Guang-Yao. Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump. Acta Physica Sinica, 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [8] Shao Zhong-Hao. . Acta Physica Sinica, 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
    [9] Hui Zhan-Qiang, Zhang Jian-Guo. All-optical multicasting based on multi-pumpfour-wave mixing in photonic crystal fiber. Acta Physica Sinica, 2011, 60(7): 074220. doi: 10.7498/aps.60.074220
    [10] Zhao Xing-Tao, Zheng Yi, Liu Xiao-Xu, Liu Zhao-Lun, Li Shu-Guang, Hou Lan-Tian. Simulation of photonic crystal fiber with three and four zero-dispersion wavelengths. Acta Physica Sinica, 2012, 61(19): 194210. doi: 10.7498/aps.61.194210
    [11] Liu Ling-Yu, Tian Hui-Ping, Ji Yue-Feng. Soliton pulse propagation and optical delay properties in photonic crystal waveguide. Acta Physica Sinica, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [12] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [13] Zhang Xin-Ben, Luo Xing, Cheng Lan, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Visible supercontinuum generation in dual-concentric-core-like photonic-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [14] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang. Ultrahigh-speed all-optical encoder based on four-wave mixing in semiconductor optical amplifiers with PolSK modulated signals. Acta Physica Sinica, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [15] Cao Ya-Min, Wu Bao-Jian, Wan Feng, Qiu Kun. Principle and noise performance of optical phase arithmetic devices using four wave mixing. Acta Physica Sinica, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [16] Li Shu-Biao, Wu Bao-Jian, Wen Feng, Han Rui. Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber. Acta Physica Sinica, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [17] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [18] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
    [19] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] Miao Xiang-Rui, Gao Shi-Ming, Gao Ying. A multicasting method based on four-wave mixing in highly nonlinear fibers. Acta Physica Sinica, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
  • Citation:
Metrics
  • Abstract views:  1101
  • PDF Downloads:  473
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2014
  • Accepted Date:  02 April 2014
  • Published Online:  05 August 2014

Experimental research of four-wave mixing and soliton effects in a photonic crystal fiber pumped femtosecond pulses at the wavelength located normal dispersion regime away from the zero dispersion point

  • 1. State Key Laboratory of Metastable Material Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China;
  • 2. Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61178026), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035), and the Science and Technology Research and Development Plan of Qinhuangdao, China (Grant No. 201101A117).

Abstract: In this paper, we show experimentally that a pair of signal wave and idler wave bands is generated by four-wave mixing, and a pair of optical solitons and dispersion wave bands is induced by intrapulse Raman scattering and non-soliton radiation, and we also observe the power saturation phenomenon of the photonic crystal fiber (PCF) by using the incident femtosecond pulses in normal dispersion region away from the zero-dispersion wavelength of the PCF. The dispersion and nonlinear characteristics of the PCF are studied by the finite element method. The possible positions of the signal wave band and the idler wave band that is generated in the fiber satisfying the phase-matching condition are simulated by four-wave mixing phase matching, the results are in good agreement with the experimental results and show that even the pump laser pulse in the normal dispersion region can also produce the PCF four-wave mixing and optical solitons effects. In the present study it also revealed that the four-wave mixing experiment is generated by the fourth-order dispersion parameter β4, and the origins of optical solitons and dispersion wave bands generation are further explained.

Reference (32)

Catalog

    /

    返回文章
    返回