Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator

Guo Yuan-Yuan Hao Jian-Long Xue Hai-Bin Liu Zhe-Jie

Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator

Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spin-torque oscillator, which can generate an AC voltage oscillation with the same frequency, have attracted considerable attention due to its potential applications in the frequency-tunable transmitters and receivers for wireless communication and the recording heads of high-density hard disk drives. However, from the energy-balance equation's point of view, in the absence of in-plane shape anisotropy of spin torque oscillator, the energy supplied by the spin torque is always larger than the energy dissipation due to the Gilbert damping, thus, a finite magnetic field applied perpendicular to the plane is required for a steady-state precession. This feature has limited its potential applications. In this paper, the influence of the intrinsic in-plane shape anisotropy on the magnetization dynamics of spin torque oscillator consisting of an in-plane polarizer and an out-of-plane free layer is studied numerically in terms of the Landau-Lifshitz-Gilbert-Slonczewski equation. It is demonstrated that the additional in-plane shape anisotropy plays a significant role in the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to Gilbert damping, which can stabilize a steady-state precession. Therefore, a stable self-oscillation in the absence of the applied magnetic field can be excited by introducing additional in-plane shape anisotropy. In particular, a relatively large current region with zero-field self-oscillation, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by introducing a relatively large intrinsic in-plane shape anisotropy. Our results suggest that a tunable spin transfer oscillator without an applied magnetic field can be realized by adjusting the intrinsic in-plane shape anisotropy, and it may be a promising configuration in the future wireless communications.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com ; Liu Zhe-Jie, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204203, 61274089), and the International Technology Collaboration Program of Shanxi Province, China (Grant No. 201481029-2).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Rippard W H, Pufall M R, Kaka S, Sliva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [5]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [6]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502(in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [7]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [8]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

    [9]

    Houssameddine D, Florez S H, Katine J A 2008 Appl. Phys. Lett. 93 022505

    [10]

    Bonetti S, Muduli P, Mancoff F, J. Akernan 2009 Appl. Phys. Lett. 94 102507

    [11]

    Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K L, Jiang H 2012 ACS Nano. 6 6115

    [12]

    Huang H B, Ma X Q, Zhao C P, Liu Z H, Chen L Q 2015 J. Magn. Magn. Mater. 373 10

    [13]

    Fang B, Zeng Z M 2014 Chin. Sei. Bull 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [14]

    Choi H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C 2014 Sci. Rep. 4 5486

    [15]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [16]

    Kudo K, Nagasawa T, Mizushima K, Suto H, Sato R 2010 Appl. Phys. Express 3 043002

    [17]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [18]

    Kubota H, Ishibashi S, Nozaki T, Nozaki T, Fukushima A, Yakushiji K, Ando K, Suzuki Y, Yuasa S 2012 J. Appl. Phys. 111 07C723

    [19]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003

    [20]

    Zeng Z M, Finocchio G, Zhang B, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, Jiang H 2013 Sci. Rep. 3 1426

    [21]

    Tamaru S, Kubota H, Yakushiji K, Nozaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T, Yuasa S 2014 Appl. Phys. Express 7 063005

    [22]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003

    [23]

    Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001

    [24]

    Slonczewski J C 2005 Phys. Rev. B 71 024411

    [25]

    Slonczewski J C, Sun J Z 2007 J. Magn. Magn. Mater. 310 169

    [26]

    Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press) p168

    [27]

    Taniguchi T 2014 Appl. Phys. Express 7 053004

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Rippard W H, Pufall M R, Kaka S, Sliva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [5]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [6]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502(in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [7]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [8]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

    [9]

    Houssameddine D, Florez S H, Katine J A 2008 Appl. Phys. Lett. 93 022505

    [10]

    Bonetti S, Muduli P, Mancoff F, J. Akernan 2009 Appl. Phys. Lett. 94 102507

    [11]

    Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K L, Jiang H 2012 ACS Nano. 6 6115

    [12]

    Huang H B, Ma X Q, Zhao C P, Liu Z H, Chen L Q 2015 J. Magn. Magn. Mater. 373 10

    [13]

    Fang B, Zeng Z M 2014 Chin. Sei. Bull 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [14]

    Choi H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C 2014 Sci. Rep. 4 5486

    [15]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [16]

    Kudo K, Nagasawa T, Mizushima K, Suto H, Sato R 2010 Appl. Phys. Express 3 043002

    [17]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [18]

    Kubota H, Ishibashi S, Nozaki T, Nozaki T, Fukushima A, Yakushiji K, Ando K, Suzuki Y, Yuasa S 2012 J. Appl. Phys. 111 07C723

    [19]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003

    [20]

    Zeng Z M, Finocchio G, Zhang B, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, Jiang H 2013 Sci. Rep. 3 1426

    [21]

    Tamaru S, Kubota H, Yakushiji K, Nozaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T, Yuasa S 2014 Appl. Phys. Express 7 063005

    [22]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003

    [23]

    Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001

    [24]

    Slonczewski J C 2005 Phys. Rev. B 71 024411

    [25]

    Slonczewski J C, Sun J Z 2007 J. Magn. Magn. Mater. 310 169

    [26]

    Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press) p168

    [27]

    Taniguchi T 2014 Appl. Phys. Express 7 053004

  • [1] Deng Cheng-Xian, Li Zheng-Jia, Zhu Chang-Hong. Singly resonant optical parametric oscillator with intracavity optical amplification. Acta Physica Sinica, 2005, 54(10): 4754-4760. doi: 10.7498/aps.54.4754
    [2] Peng Qin-Jun, Bo Yong, Cui Da-Fu, Xu Zu-Yan, Cui Qian-Jin, Xu Yi-Ting, Zong Nan, Lu Yuan-Fu, Cheng Xian-Kun. High power 2μm intracavity doubly resonant optical parametric oscillator. Acta Physica Sinica, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [3] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [4] Guo Jing, He Guang-Yuan, Jiao Zhong-Xing, Wang Biao. High-efficiency intracavity 2 μm degenerate optical parametric oscillator. Acta Physica Sinica, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [5] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [6] PING-CHUAN FENG. NOTES ON THE PLATE EFFICIENCY OF POWER OSCILLATORS. Acta Physica Sinica, 1949, 7(4): 43-51. doi: 10.7498/aps.7.43
    [7] PING-CHUAN FENG, PENG-FEI HSU. PHASE COMPENSATION IN POWER OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [8] Yu Yong-Ji, Chen Xin-Yu, Cheng Li-Bo, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Continuous-wave 1.57 m/3.84 m intra-cavity multiple optical parametric oscillator based on MgO:APLN. Acta Physica Sinica, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [9] LI YONG-MIN, FAN QIAO-YUN, ZHANG KUAN-SHOU, XIE CHANG-DE, PENG KUN-CHI. QUADRATURE PHASE-SQUEEZING OF PUMP FIELD REFLECTED FROM TRIPLY RESONANT QUASI-PHASE-MATCHED OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [10] Duan Ping, Yu Da-Ren, Qing Shao-Wei, Ding Yong-Jie, Wang Xiao-Gang. Effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thrusters. Acta Physica Sinica, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [11] Xu Bi-Rong, Wang Guang-Yi. Meminductive Wein-bridge chaotic oscillator. Acta Physica Sinica, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [12] Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong. Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization. Acta Physica Sinica, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [13] FING-CHUAN FENG, PING-CHENG HSU. GRAPHICAL PRE-DETERMINATION OF THE PERFORMANCE OF POWER OSCILLATORS. Acta Physica Sinica, 1951, 8(1): 64-72. doi: 10.7498/aps.8.64
    [14] Li Zheng-Hong, Meng Fan-Bao, Chang An-Bi, Huang Hua, Ma Qiao-Sheng. Investigation of bitron as a high power microwave oscillator. Acta Physica Sinica, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [15] Feng Xiu-Qin, Shen Ke. Anti-control of chaos on the degenerate optical parametric oscillator. Acta Physica Sinica, 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [16] Li Zheng-Hong, Chang An-Bi, Ju Bing-Quan, Zhang Youg-Hui, Xiang Fei, Zhao Dian-Lin, Gan Yan-Qing, Liu Zhong, Su Chang, Huang Hua. Experimental and theoretical study of a quasi-bitron as a new high-power microwave device. Acta Physica Sinica, 2007, 56(5): 2603-2607. doi: 10.7498/aps.56.2603
    [17] Zhang Yun-Jian, Meng Fan-Bao, Fan Zhi-Kai, Luo Xiong. A proposed high electrical efficiency and high current intensity radial split-cavity oscillator. Acta Physica Sinica, 2008, 57(2): 975-979. doi: 10.7498/aps.57.975
    [18] Huang Hua, Gan Yan-Qing, Lei Lu-Rong, Jin Xiao, Ju Bing-Quan, Xiang Fei, Feng Di-Chao, Liu Zhong. Investigation on an S-band relativistic klystron oscillator. Acta Physica Sinica, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [19] Yu Si-Min. Fourth-order Colpitts chaotic oscillator. Acta Physica Sinica, 2008, 57(6): 3374-3379. doi: 10.7498/aps.57.3374
    [20] LIN ZUN-QI, ZHENG YU-XIA, YU WEN-YAN. APODIZED APERTURE USED IN THE LASER OSCILLATOR. Acta Physica Sinica, 1979, 28(2): 268-275. doi: 10.7498/aps.28.268
  • Citation:
Metrics
  • Abstract views:  915
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2015
  • Accepted Date:  02 June 2015
  • Published Online:  05 October 2015

Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator

    Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com
    Corresponding author: Liu Zhe-Jie, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com
  • 1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
  • 2. Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
  • 3. Department of electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11204203, 61274089), and the International Technology Collaboration Program of Shanxi Province, China (Grant No. 201481029-2).

Abstract: The spin-torque oscillator, which can generate an AC voltage oscillation with the same frequency, have attracted considerable attention due to its potential applications in the frequency-tunable transmitters and receivers for wireless communication and the recording heads of high-density hard disk drives. However, from the energy-balance equation's point of view, in the absence of in-plane shape anisotropy of spin torque oscillator, the energy supplied by the spin torque is always larger than the energy dissipation due to the Gilbert damping, thus, a finite magnetic field applied perpendicular to the plane is required for a steady-state precession. This feature has limited its potential applications. In this paper, the influence of the intrinsic in-plane shape anisotropy on the magnetization dynamics of spin torque oscillator consisting of an in-plane polarizer and an out-of-plane free layer is studied numerically in terms of the Landau-Lifshitz-Gilbert-Slonczewski equation. It is demonstrated that the additional in-plane shape anisotropy plays a significant role in the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to Gilbert damping, which can stabilize a steady-state precession. Therefore, a stable self-oscillation in the absence of the applied magnetic field can be excited by introducing additional in-plane shape anisotropy. In particular, a relatively large current region with zero-field self-oscillation, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by introducing a relatively large intrinsic in-plane shape anisotropy. Our results suggest that a tunable spin transfer oscillator without an applied magnetic field can be realized by adjusting the intrinsic in-plane shape anisotropy, and it may be a promising configuration in the future wireless communications.

Reference (27)

Catalog

    /

    返回文章
    返回