Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Total internal reflection orders in transmission grating

Wu Rong Tian Yu-Ting Zhao Dong-Feng Li Da-Wei Hua Neng Shao Ping

Total internal reflection orders in transmission grating

Wu Rong, Tian Yu-Ting, Zhao Dong-Feng, Li Da-Wei, Hua Neng, Shao Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In a current high-power laser system, transmission grating has been used to sample, separate and focus laser beam. Under high power laser irradiation, besides the 0-order shooting beam and target sampling beam, the detrimental influence of other diffraction orders should be taken into consideration seriously. These useless orders may damage other nearby optical elements and mechanical devices, disturb and confuse the measurement of time pulse and near/far-field intensity. Especially the total internal diffraction order will lead to some series diffraction patterns, causing the above problems. First, relevant theoretical calculation and analysis are carried out for transmission grating (including beam sample grating and focusing grating), which can predict and indicate these inconspicuous diffraction orders. These orders appear on four receiving screens regularly and periodically, and the periodic distance between them is determined by ray-tracing draft. Second, the phenomenon of total internal reflection order is observed and measured by combining with anti-reflection film. The measured periodic spacings on three screens are 24 mm, 26 mm and 35 mm, respectively. Moreover, energy intensities of these redundant orders are measured finely, which shows that their contrasts or SNRs to 0-order main laser is in a range of 10-8-10-4). Finally, some appropriate and effective approaches to eliminating or avoiding total internal reflection and other useless orders are proposed and discussed, which include 1) coating by anti-reflection film with pre-deep etching; 2) optimizing the grating design to make redundant orders far from target spot; 3) placing laser scattering or absorbing devices at corresponding position to avoid being damaged by the side-leakage energy and ghost image of total internal reflection and other redundant orders.
      Corresponding author: Wu Rong, 46438131@qq.com
    • Funds: Project supported by Major Project of the National Science and Technology of the Ministry of Science and Technology of China (Grant No. GFZX0205010405.2) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204331).
    [1]

    Liu Q, Wu J H, Li C M 2005 Laser Technol. 29 398 (in Chinese) [刘全, 吴建宏, 李朝明 2005 激光技术 29 398]

    [2]

    Chen D W 2006 Laser J. 27 28 (in Chinese) [陈德伟 2006 激光杂志 27 28]

    [3]

    Luce J 2011 Proc. SPIE 8130 813002

    [4]

    Liu H F 2006 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [留浩飞 2006 硕士学位论文 (杭州: 浙江大学)]

    [5]

    Liu H J, Liu L Q, Su J Q, Hu D X, Zhou W, Zhao J P, Wang W Y, Mo L, Jiang X Y, Jiang X J, Zhang K, Zhu Q H, Yu H W, Jing F 2008 Acta Opt. Sin. 28 976 (in Chinese) [刘红婕, 刘兰琴, 粟敬钦, 胡东霞, 周维, 赵军普, 王文义, 莫磊, 蒋新颖, 蒋学军, 张昆, 朱启华, 於海武, 景峰 2008光学学报 28 976]

    [6]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870

    [7]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [8]

    Bay anheshig 2004 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics) (in Chinese) [巴音贺希格2004 博士学位论文 (长春: 长春光机所)]

    [9]

    Wang X D, Wang X, He Y L, Zheng H B, Tan J C, Ding D Y, Zheng G W 2010 Chin. Phys. B 19 074215

    [10]

    Liu Y D, Gao C Q, Gao M W 2008 Chin. Phys. B 17 1769

    [11]

    Fu K X, Wang Z H, Wen J, Zhou C H 1998 Acta Opt. Sin. 18 870 (in Chinese) [傅克祥, 王植恒, 文军, 周传宏 1998 光学学报 18 870]

    [12]

    Fu K X, Zhang D Y, Wang Z H, Zhang Q Z, Zhang J 1998 Acta Phys. Sin. 47 1278 (in Chinese) [傅克祥, 张大跃, 王植恒, 张奇志, 张靖 1998 物理学报 47 1278]

    [13]

    Wang Z H, Fu K X, Wen J, Yuan J H 1998 Chin. J. Lasers A25 270 (in Chinese) [王植恒, 傅克祥, 文军, 袁景和 1998 中国激光 A25 270]

    [14]

    Zhao D F, Wang L, Lin Z Q, Shao P, Ji L L, Cai Z J, Wu R, Dai Y P, Zhu J Q 2011 Chin. J. Lasers 38 0702001 (in Chinese) [赵东峰, 王利, 林尊琪, 邵平, 季来林, 蔡志坚, 邬融, 戴亚平, 朱健强 2011 中国激光 38 0702001]

    [15]

    Rao H L 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [饶欢乐 2013 博士学位论文 (合肥: 中国科学技术大学)]

    [16]

    Rao H L, Liu Z K, Liu Y, Jiang X L, Qiu K Q, Xu X D, Hong Y L, Fu S J 2013 High Power Laser and Particle Beams 25 1609 (in Chinese) [饶欢乐, 刘正坤, 刘颖, 蒋晓龙, 邱克强, 徐向东, 洪义麟, 付绍军 2013 强激光与粒子束 25 1609]

    [17]

    Anheshig B, Qi X D, Tang Y G 2003 J. Optoelectron. Laser 14 1021 (in Chinese) [巴音贺希格, 齐向东, 唐玉国 2003 光电子·$激光 14 1021]

    [18]

    Fu K X, Wang Z H, Zhang D Y, Wen J, Tang J 1997 Acta Opt. Sin. 17 1652 (in Chinese) [傅克祥, 王植恒, 张大跃, 文军, 唐晋 1997 光学学报 17 1652]

    [19]

    Shan W L, Yang J M, Zhao Y, Zhu T, Xiong G 2011 Acta Phys. Sin. 60 094212 (in Chinese) [尚万里, 杨家敏, 赵阳, 朱托, 熊刚 2011 物理学报 60 094212]

    [20]

    Shan W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216

    [21]

    Chai L Q, Yang L M, Xu Q 2002 High Power Laser and Particle Beams 14 270 (in Chinese) [柴立群, 杨李茗, 许乔 2002 强激光与粒子束 14 270]

    [22]

    Gao F H 2003 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese) [高福华 2003 博士学位论文 (成都: 四川大学)]

    [23]

    Liu Q, Wu J H 2007 High Power Laser and Particle Beams 19 75 (in Chinese) [刘全, 吴建宏 2007 强激光与粒子束 19 75]

    [24]

    Cavailler C, Fleurot N, Di-nicola J M 2005 Proc. SPIE 5580 443

  • [1]

    Liu Q, Wu J H, Li C M 2005 Laser Technol. 29 398 (in Chinese) [刘全, 吴建宏, 李朝明 2005 激光技术 29 398]

    [2]

    Chen D W 2006 Laser J. 27 28 (in Chinese) [陈德伟 2006 激光杂志 27 28]

    [3]

    Luce J 2011 Proc. SPIE 8130 813002

    [4]

    Liu H F 2006 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [留浩飞 2006 硕士学位论文 (杭州: 浙江大学)]

    [5]

    Liu H J, Liu L Q, Su J Q, Hu D X, Zhou W, Zhao J P, Wang W Y, Mo L, Jiang X Y, Jiang X J, Zhang K, Zhu Q H, Yu H W, Jing F 2008 Acta Opt. Sin. 28 976 (in Chinese) [刘红婕, 刘兰琴, 粟敬钦, 胡东霞, 周维, 赵军普, 王文义, 莫磊, 蒋新颖, 蒋学军, 张昆, 朱启华, 於海武, 景峰 2008光学学报 28 976]

    [6]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870

    [7]

    Li L F 1997 J. Opt. Soc. Am. A 14 2758

    [8]

    Bay anheshig 2004 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics) (in Chinese) [巴音贺希格2004 博士学位论文 (长春: 长春光机所)]

    [9]

    Wang X D, Wang X, He Y L, Zheng H B, Tan J C, Ding D Y, Zheng G W 2010 Chin. Phys. B 19 074215

    [10]

    Liu Y D, Gao C Q, Gao M W 2008 Chin. Phys. B 17 1769

    [11]

    Fu K X, Wang Z H, Wen J, Zhou C H 1998 Acta Opt. Sin. 18 870 (in Chinese) [傅克祥, 王植恒, 文军, 周传宏 1998 光学学报 18 870]

    [12]

    Fu K X, Zhang D Y, Wang Z H, Zhang Q Z, Zhang J 1998 Acta Phys. Sin. 47 1278 (in Chinese) [傅克祥, 张大跃, 王植恒, 张奇志, 张靖 1998 物理学报 47 1278]

    [13]

    Wang Z H, Fu K X, Wen J, Yuan J H 1998 Chin. J. Lasers A25 270 (in Chinese) [王植恒, 傅克祥, 文军, 袁景和 1998 中国激光 A25 270]

    [14]

    Zhao D F, Wang L, Lin Z Q, Shao P, Ji L L, Cai Z J, Wu R, Dai Y P, Zhu J Q 2011 Chin. J. Lasers 38 0702001 (in Chinese) [赵东峰, 王利, 林尊琪, 邵平, 季来林, 蔡志坚, 邬融, 戴亚平, 朱健强 2011 中国激光 38 0702001]

    [15]

    Rao H L 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [饶欢乐 2013 博士学位论文 (合肥: 中国科学技术大学)]

    [16]

    Rao H L, Liu Z K, Liu Y, Jiang X L, Qiu K Q, Xu X D, Hong Y L, Fu S J 2013 High Power Laser and Particle Beams 25 1609 (in Chinese) [饶欢乐, 刘正坤, 刘颖, 蒋晓龙, 邱克强, 徐向东, 洪义麟, 付绍军 2013 强激光与粒子束 25 1609]

    [17]

    Anheshig B, Qi X D, Tang Y G 2003 J. Optoelectron. Laser 14 1021 (in Chinese) [巴音贺希格, 齐向东, 唐玉国 2003 光电子·$激光 14 1021]

    [18]

    Fu K X, Wang Z H, Zhang D Y, Wen J, Tang J 1997 Acta Opt. Sin. 17 1652 (in Chinese) [傅克祥, 王植恒, 张大跃, 文军, 唐晋 1997 光学学报 17 1652]

    [19]

    Shan W L, Yang J M, Zhao Y, Zhu T, Xiong G 2011 Acta Phys. Sin. 60 094212 (in Chinese) [尚万里, 杨家敏, 赵阳, 朱托, 熊刚 2011 物理学报 60 094212]

    [20]

    Shan W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216

    [21]

    Chai L Q, Yang L M, Xu Q 2002 High Power Laser and Particle Beams 14 270 (in Chinese) [柴立群, 杨李茗, 许乔 2002 强激光与粒子束 14 270]

    [22]

    Gao F H 2003 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese) [高福华 2003 博士学位论文 (成都: 四川大学)]

    [23]

    Liu Q, Wu J H 2007 High Power Laser and Particle Beams 19 75 (in Chinese) [刘全, 吴建宏 2007 强激光与粒子束 19 75]

    [24]

    Cavailler C, Fleurot N, Di-nicola J M 2005 Proc. SPIE 5580 443

  • [1] Weng Yong-Chao, Kuang Long-Yu, Gao Nan, Cao Lei-Feng, Zhu Xiao-Li, Wang Xiao-Hua, Xie Chang-Qing. Reflection type single-order diffraction grating. Acta Physica Sinica, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [2] Study on the physical problems of diffraction waveguide used in large field of view. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200835
    [3] Wen Sheng-Lin, Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [4] Bayanheshig. The second kind angular dispersion and the analysis of characteristics of diffraction grating. Acta Physica Sinica, 2004, 53(7): 2118-2122. doi: 10.7498/aps.53.2118
    [5] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [6] Wang Chen, Yuan Jing-He, Wang Gui-Ying, Xu Zhi-Zhan. The influence of polarized light on fluorescence emission in total internal refl ection microscopy. Acta Physica Sinica, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [7] Zhang Jun, Yu Tian-Bao, Liu Nian-Hua, Liao Qing-Hua, He Ling-Juan. Propagation properties of light in multimode photonic crystal waveguides with triangular lattices based on total internal reflection. Acta Physica Sinica, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [8] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [9] Wu Ying-Cai, Gu Zheng-Tian. Research on the optimum thickness of metallic thin film utilized to excite surface plasmon resonance. Acta Physica Sinica, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [10] Zhou Jun, Sun Yong-Tang, Sun Tie-Tun, Liu Xiao, Song Wei-Jie. Design of a highly efficient light-trapping structure for amorphous silicon solar cell. Acta Physica Sinica, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [11] Li Bao, Du Bing-Zheng, Zhu Jing-Ping. Study on planar concave diffraction grating with Bragg reflector facets. Acta Physica Sinica, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [12] Gong Xin, Hua Deng-Xin, Li Shi-Chun, Wang Jun, Shi Xiao-Jing. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating. Acta Physica Sinica, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [13] Li Bao, Zhu Jing-Ping, Du Bing-Zheng. Study of the diffraction grating designed based on the Bragg reflection structure. Acta Physica Sinica, 2014, 63(19): 194209. doi: 10.7498/aps.63.194209
    [14] Liu Yan, Li Bin, Lu Shao-Hua, Xu Ou, Ren Wen-Hua, Wang Yan-Hua, Feng Su-Chun, Jian Shui-Sheng. A novel method for fabricating sampled fiber grating amplitude mask. Acta Physica Sinica, 2008, 57(1): 291-297. doi: 10.7498/aps.57.291
    [15] Shang Wan-Li, Yang Jia-Min, Zhao Yang, Zhu Tuo, Xiong Gang. General model of transmission grating diffraction efficiency. Acta Physica Sinica, 2011, 60(9): 094212. doi: 10.7498/aps.60.094212
    [16] Wang Yi-Ming, Hu Chen-Chen, Liu Quan, Guo Hui-Yong, Yin Guang-Lin, Li Zheng-Ying. High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry. Acta Physica Sinica, 2016, 65(20): 204209. doi: 10.7498/aps.65.204209
    [17] Li Jian-Long, Lü Bai-Da. Propagation of linearly polarized Gaussian beam through the compound modulated diffraction grating. Acta Physica Sinica, 2008, 57(3): 1656-1661. doi: 10.7498/aps.57.1656
    [18] Qi Xiao-Qing, Gao Chun-Qing, Liu Yi-Dong. Generation of helical beams with pre-determined energy distribution based on phase modulation gratings. Acta Physica Sinica, 2010, 59(1): 264-270. doi: 10.7498/aps.59.264
    [19] Li Fang, Jiang Yue-Song, Ou Jun, Tang Hua. Diffraction characteristic of a misaligned vortex beam through a phase-hologram grating. Acta Physica Sinica, 2011, 60(8): 084201. doi: 10.7498/aps.60.084201
    [20] ZHOU GUO-SHENG. AN APPROXIMATE ANALYSIS ON CONCAVE (PLANE) GRATING-MIRROR STABLE RESONATOR. Acta Physica Sinica, 1978, 27(6): 681-690. doi: 10.7498/aps.27.681
  • Citation:
Metrics
  • Abstract views:  1454
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2015
  • Accepted Date:  12 November 2015
  • Published Online:  05 March 2016

Total internal reflection orders in transmission grating

    Corresponding author: Wu Rong, 46438131@qq.com
  • 1. National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by Major Project of the National Science and Technology of the Ministry of Science and Technology of China (Grant No. GFZX0205010405.2) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204331).

Abstract: In a current high-power laser system, transmission grating has been used to sample, separate and focus laser beam. Under high power laser irradiation, besides the 0-order shooting beam and target sampling beam, the detrimental influence of other diffraction orders should be taken into consideration seriously. These useless orders may damage other nearby optical elements and mechanical devices, disturb and confuse the measurement of time pulse and near/far-field intensity. Especially the total internal diffraction order will lead to some series diffraction patterns, causing the above problems. First, relevant theoretical calculation and analysis are carried out for transmission grating (including beam sample grating and focusing grating), which can predict and indicate these inconspicuous diffraction orders. These orders appear on four receiving screens regularly and periodically, and the periodic distance between them is determined by ray-tracing draft. Second, the phenomenon of total internal reflection order is observed and measured by combining with anti-reflection film. The measured periodic spacings on three screens are 24 mm, 26 mm and 35 mm, respectively. Moreover, energy intensities of these redundant orders are measured finely, which shows that their contrasts or SNRs to 0-order main laser is in a range of 10-8-10-4). Finally, some appropriate and effective approaches to eliminating or avoiding total internal reflection and other useless orders are proposed and discussed, which include 1) coating by anti-reflection film with pre-deep etching; 2) optimizing the grating design to make redundant orders far from target spot; 3) placing laser scattering or absorbing devices at corresponding position to avoid being damaged by the side-leakage energy and ghost image of total internal reflection and other redundant orders.

Reference (24)

Catalog

    /

    返回文章
    返回