搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续扫频光时域反射的全同弱光栅高速解调方法

王一鸣 胡陈晨 刘泉 郭会勇 殷广林 李政颖

引用本文:
Citation:

基于连续扫频光时域反射的全同弱光栅高速解调方法

王一鸣, 胡陈晨, 刘泉, 郭会勇, 殷广林, 李政颖

High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry

Wang Yi-Ming, Hu Chen-Chen, Liu Quan, Guo Hui-Yong, Yin Guang-Lin, Li Zheng-Ying
PDF
导出引用
  • 具有大容量复用能力的全同弱反射光栅已成为光纤传感领域的研究热点,然而现有的全同弱光栅时分复用解调技术存在解调复杂和响应时间长等问题.针对此问题,本文提出了一种连续扫频光时域反射的高速解调新方法.不同于光时域反射的脉冲光,本方法采用的是连续光扫频,利用光传输延时来实现不同位置的全同光栅在时域上的分离,利用光谱扫频实现光栅波长信息的解调,在系统解调工作阶段,一次扫频就能同时获取所有光栅的位置信息和完整的反射光谱波长信息.针对光谱高速扫频情况下光传输延时所引入的光栅波长解调误差,本文提出在系统初始阶段采用延时校准方法,通过不同的光谱扫频速度,获取各个光栅固有的延时时间参量,确定各光栅位置,消除光传输延时,完成各光栅的波长解调.实验对18个全同弱光栅组成的传感网络进行了初始校准、静态温度和动态振动实验,结果表明,对全同弱光栅的解调误差小于15 pm,分辨率1 pm,线性度达0.998,系统可分析60 kHz内的频谱信息,解调频率高达120 kHz.
    The identical weak reflection Fiber Bragg gratings (FBGs) with large capacity has become one of the central issues of optical fiber sensing field in the engineering application.Currently,wavelength division multiplexing (WDM) and time division multiplexing (TDM) are two major multiplexing techniques.For a WDM system,the maximum number of FBGs is limited by the spectral bandwidth of laser.So the identical weak FBGs are proposed to break through the limitation of the multiplexing capacity.For large-capacity multiplexing of identical weak FBGs,TDM technique is commonly used.In a TDM system,the spectral information of all FBGs can be obtained by some pulsed light with different wavelengths.However,with increasing the number of identical weak FBGs in TDM system,some problems such as complex demodulation process and slow response time are highlighted in the current various demodulation methods. Thus in this paper we propose a new high-speed demodulation method combined with wavelength-sweep optical timedomain reflectometry (WSOTDR) which is different from the pulsed light in optical time domain reflectometry (OTDR), namely a continuous wavelength-sweep light source is used in WSOTDR.In this method,the reflected signals of identical weak FBG at each position will be distinguished from others in time domain through optical delay effect,hence the location information of each FBG could be acquired,and meanwhile the wavelength information of all the identical weak FBGs could be obtained through high-frequency periodical wavelength-swept spectrum in just one wavelength scanning period.In order to calibrate the error of FBG demodulation which is caused by optical delay at high-speed wavelength sweep,we propose a self-calibration method in which two different wavelength-sweep rates are used to obtain the inherent delay parameters of each FBG.In practical application,we use this self-calibration method in the initial stage of demodulation because the inherent delay parameters are usually stable after the layout of an identical weak FBGs network.So the demodulating speed at the working stage of this system is not affected by this self-calibration method. In this paper,by setting up a Fourier domain mode locking laser as an output of continuous wavelength-sweep and highspeed (3.27×106 and 2.72×106 nm/s) light,an identical weak FBG sensing network which consists of 18 FBGs is tested in three experiments.In the initial calibration experiment,we use the self-calibration method to calibrate the inherent delay parameters of each FBG and to verify the accuracy of the system by comparing with the measurement result of spectrum analyzer.In the temperature experiment,the wavelength of each FBG is demodulated from 30 to 100 ℃ in order to test the demodulation linearity of the system.Then in the vibration experiment,a dynamic measurement of 3.6 kHz vibration of FBG is demonstrated with a demodulating speed as fast as 120 kHz,and a 0-60 kHz frequency spectrum is analyzed to prove the speed.The experimental results show that the demodulation error is less than 15 pm, the resolution is 1pm,the linearity is above 0.998,and the demodulating speed reaches 120 kHz.
      通信作者: 李政颖, zhyli@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575149,61290311)和国家国际科技合作专项(批准号:2015DFA70340)资助的课题.
      Corresponding author: Li Zheng-Ying, zhyli@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575149, 61290311) and the International Science Technology Cooperation Program of China (Grant No. 2015DFA70340).
    [1]

    Wang L, Li D S, Ou J P 2011 Adv. Mater. Res. 148 1611

    [2]

    Jiang D S, He W 2002 J. Opt. Laser 13 420(in Chinese)[姜德生, 何伟2002光电子·激光13 420]

    [3]

    Wang F F, Zhang L, Yang L Z, Liu Y Y 2014 Acta Opt. Sin. 34 88(in Chinese)[王斐斐, 张丽, 杨玲珍, 刘艳阳2014光学学报34 88]

    [4]

    Zhou Q, Ning T G, Pei L, Li J, Li C, Zhang C 2012 Opt. Lett. 8 414

    [5]

    Jiang H, Chen J, Liu T, Huang W 2013 Sensor. Actuat. A:Phys. 198 31

    [6]

    Chen D, Fok M P, Shu C, He S 2008 Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science Canada, May 4-9, 2008 p1

    [7]

    Lee B C, Jung E J, Kim C S, Jeon M Y 2010 Meas. Sci. Technol. 21 094008

    [8]

    Chen D, Shu C, He S 2008 Opt. Lett. 33 1395

    [9]

    Yu H H, Zheng Y, Guo H Y, Jiang D S 2014 J. Funct. Mater. 12 12001(in Chinese)[余海湖, 郑羽, 郭会勇, 姜德生2014功能材料12 12001]

    [10]

    Dai Y, Liu Y, Leng J, Deng G, Asundi A 2009 Opt. Lasers Eng. 47 1028

    [11]

    Li Z Y, Sun W F, Li Z M, Wang H H 2015 Acta Phys. Sin. 64 234207 (in Chinese)[李政颖, 孙文丰, 李子墨, 王洪海2015物理学报64 234207]

    [12]

    Zhang C X, Zhang Z W, Zheng W F, Liu X H, Li Y, Dong X Y 2014 Chin. J. Lasers 41 0405004(in Chinese)[张彩霞, 张震伟, 郑万福, 刘晓航, 李裔, 董新永2014中国激光41 0405004]

    [13]

    Chan C C, Wei J, Ho H L, Demokan M S 2000 IEEE J. Sel. Top. Quant 6 741

    [14]

    Zhang M L, Sun Q Z, Wang Z, Li X L, Liu H R, Liu D M 2011 Laser & Optoelectronics Progress 8 93(in Chinese)[张满亮, 孙琪真, 王梓, 李晓磊, 刘海荣, 刘德明2011激光与光电子学进展8 93]

    [15]

    Hu C W, Wen H Q, Bai W 2014 J. Lightwave Technol. 32 1406

    [16]

    Wang Y, Liu W, Fu J, Chen D 2009 Laser Phys. 19 450

    [17]

    Li Z Y, Liu M Y, Wang Y M, Liu Q, Gong J M 2014 IEEE Photon. Technol. Lett. 26 2090

    [18]

    Yin G L, Dai Y T, Karanja J M, Dai J X 2015 Sensor. Actuat. A:Phys. 235 311

  • [1]

    Wang L, Li D S, Ou J P 2011 Adv. Mater. Res. 148 1611

    [2]

    Jiang D S, He W 2002 J. Opt. Laser 13 420(in Chinese)[姜德生, 何伟2002光电子·激光13 420]

    [3]

    Wang F F, Zhang L, Yang L Z, Liu Y Y 2014 Acta Opt. Sin. 34 88(in Chinese)[王斐斐, 张丽, 杨玲珍, 刘艳阳2014光学学报34 88]

    [4]

    Zhou Q, Ning T G, Pei L, Li J, Li C, Zhang C 2012 Opt. Lett. 8 414

    [5]

    Jiang H, Chen J, Liu T, Huang W 2013 Sensor. Actuat. A:Phys. 198 31

    [6]

    Chen D, Fok M P, Shu C, He S 2008 Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science Canada, May 4-9, 2008 p1

    [7]

    Lee B C, Jung E J, Kim C S, Jeon M Y 2010 Meas. Sci. Technol. 21 094008

    [8]

    Chen D, Shu C, He S 2008 Opt. Lett. 33 1395

    [9]

    Yu H H, Zheng Y, Guo H Y, Jiang D S 2014 J. Funct. Mater. 12 12001(in Chinese)[余海湖, 郑羽, 郭会勇, 姜德生2014功能材料12 12001]

    [10]

    Dai Y, Liu Y, Leng J, Deng G, Asundi A 2009 Opt. Lasers Eng. 47 1028

    [11]

    Li Z Y, Sun W F, Li Z M, Wang H H 2015 Acta Phys. Sin. 64 234207 (in Chinese)[李政颖, 孙文丰, 李子墨, 王洪海2015物理学报64 234207]

    [12]

    Zhang C X, Zhang Z W, Zheng W F, Liu X H, Li Y, Dong X Y 2014 Chin. J. Lasers 41 0405004(in Chinese)[张彩霞, 张震伟, 郑万福, 刘晓航, 李裔, 董新永2014中国激光41 0405004]

    [13]

    Chan C C, Wei J, Ho H L, Demokan M S 2000 IEEE J. Sel. Top. Quant 6 741

    [14]

    Zhang M L, Sun Q Z, Wang Z, Li X L, Liu H R, Liu D M 2011 Laser & Optoelectronics Progress 8 93(in Chinese)[张满亮, 孙琪真, 王梓, 李晓磊, 刘海荣, 刘德明2011激光与光电子学进展8 93]

    [15]

    Hu C W, Wen H Q, Bai W 2014 J. Lightwave Technol. 32 1406

    [16]

    Wang Y, Liu W, Fu J, Chen D 2009 Laser Phys. 19 450

    [17]

    Li Z Y, Liu M Y, Wang Y M, Liu Q, Gong J M 2014 IEEE Photon. Technol. Lett. 26 2090

    [18]

    Yin G L, Dai Y T, Karanja J M, Dai J X 2015 Sensor. Actuat. A:Phys. 235 311

计量
  • 文章访问数:  2309
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-07-21
  • 刊出日期:  2016-10-05

基于连续扫频光时域反射的全同弱光栅高速解调方法

  • 1. 武汉理工大学, 光纤传感技术与信息处理教育部重点实验室, 武汉 430070;
  • 2. 武汉理工大学, 光纤传感技术国家工程实验室, 武汉 430070
  • 通信作者: 李政颖, zhyli@whut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61575149,61290311)和国家国际科技合作专项(批准号:2015DFA70340)资助的课题.

摘要: 具有大容量复用能力的全同弱反射光栅已成为光纤传感领域的研究热点,然而现有的全同弱光栅时分复用解调技术存在解调复杂和响应时间长等问题.针对此问题,本文提出了一种连续扫频光时域反射的高速解调新方法.不同于光时域反射的脉冲光,本方法采用的是连续光扫频,利用光传输延时来实现不同位置的全同光栅在时域上的分离,利用光谱扫频实现光栅波长信息的解调,在系统解调工作阶段,一次扫频就能同时获取所有光栅的位置信息和完整的反射光谱波长信息.针对光谱高速扫频情况下光传输延时所引入的光栅波长解调误差,本文提出在系统初始阶段采用延时校准方法,通过不同的光谱扫频速度,获取各个光栅固有的延时时间参量,确定各光栅位置,消除光传输延时,完成各光栅的波长解调.实验对18个全同弱光栅组成的传感网络进行了初始校准、静态温度和动态振动实验,结果表明,对全同弱光栅的解调误差小于15 pm,分辨率1 pm,线性度达0.998,系统可分析60 kHz内的频谱信息,解调频率高达120 kHz.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回