搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散效应的光纤光栅高速高精度解调方法研究

李政颖 周磊 孙文丰 李子墨 王加琪 郭会勇 王洪海

基于色散效应的光纤光栅高速高精度解调方法研究

李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海
PDF
导出引用
导出核心图
  • 利用普通单模光纤(SMF)与色散补偿光纤(DCF)分别具有正色散和负色散系数特性,实现光纤光栅阵列的高速高精度解调.系统采用全光纤结构,仅需发出单一高速光脉冲,即可根据反射光脉冲时延差同时获取各个光栅的波长与位置信息,大幅提高了光纤光栅解调速度;通过建立DCF-SMF双通道和色散差矫正模型,削弱了温度变化及色散值误差对系统解调精度的影响.实验表明,本方法解调速率可达1 MHz,解调过程受传感网络光纤及双通道温变影响较小,具有良好稳定性及高精度;5–75℃温度扰动实验中,传感网络传输光纤温变时系统解调均方差16.8 pm,DCF-SMF双通道受温度扰动时系统解调均方差为11.9 pm,恒温下系统长时间解调时均方差为6.4 pm;应力实验中,解调线性度可达0.9998,解调精度约为8.5 pm.
      通信作者: 李政颖, zhyli@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575149)资助的课题.
    [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1]

    Qiao X G, Ding F, Jia Z A, Fu H W, Ying X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese)[乔学光, 丁峰, 贾振安, 傅海威, 营旭东, 周锐, 宋娟2011物理学报60 074221]

    [2]

    Jin J, Lin S, Song N F 2014 Chin. Phys. B 23 014206

    [3]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct 15 1429

    [4]

    Meng L J, Tan Y G, Zhou Z D, Liang B K, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese)[孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉2013中国机械工程24 980]

    [5]

    Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P 2008 Opt. Express 16 16552

    [6]

    Nakazaki Y, Yamashita S 2009 Opt. Express 17 8310

    [7]

    van Hoe B, Oman K, Peters K, van Steenberge G, Stan N, Schultz S 2014 IEEE Sensors 2014 Valencia Spain, November 2-5, 2014 p402

    [8]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199(in Chinese)[刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大2004光学学报24 199]

    [9]

    Li L, Lin Y C, Shen X Y, Fu L H, Wang W 2007 J. Trans. Technol. 20 994(in Chinese)[李丽, 林玉池, 沈小燕, 付鲁华, 王为2007传感技术学报20 994]

    [10]

    Liu Q, Wang Y M, Liu S Q, Li Z Y 2015 J. Optoelectron.·Laser 26 1473(in Chinese)[刘泉, 王一鸣, 刘司琪, 李政颖2015光电子·激光261473]

    [11]

    Li P, Shi L, Sun Q, Feng S J, Mao Q H 2015 Chin. Phys. B 24 074207

    [12]

    Tan S J, Harun S W, Ali N M, Ismail M A, Ahmad H 2013 Quantum Electron. IEEE J. 49 595

    [13]

    Wang Z F, Liu X M, Hou J 2010 Chin. J. Lasers 37 1496(in Chinese)[王泽锋, 刘小明, 侯静2010中国激光37 1496]

    [14]

    Zou X H, Zhang S J, Wang H, Zheng X, Ye S W, Zhang Y L, Liu Y 2014 J. Optoelectron.·Laser 25 932(in Chinese)[邹新海, 张尚剑, 王恒, 郑秀, 叶胜威, 张雅丽, 刘永2014光电子·激光25 932]

    [15]

    Zhang L C, Hou L T, Zhou G Y 2011 Acta Phys. Sin. 60 054217 (in Chinese)[张立超, 侯蓝田, 周桂耀2011物理学报60 054217]

    [16]

    Li D S, Liang D K, Pan X W 2005 Acta Opt. Sin. 25 1166(in Chinese)[李东升, 梁大开, 潘晓文2005光学学报25 1166]

  • [1] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [2] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器. 物理学报, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [3] 杨秀峰, 吕 超, 李勇男, 涂成厚, 吕福云, 王宏杰, 郭文刚, 罗绍均, 李恩邦. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [4] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [5] 饶云江, 莫秋菊, 朱 涛. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [6] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [7] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [8] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [9] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [10] 乔学光, 贾振安, 李 明, 周 红, 傅海威. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [11] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [12] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [13] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术. 物理学报, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [14] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [15] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [16] 饶云江, 莫秋菊, 王久玲, 朱 涛. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [17] 宋韵, 朱永, 朱涛, 饶云江. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [18] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [19] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [20] 马海强, 李泉跃, 汪龙, 韦克金, 张勇, 焦荣珍. 一种高速率、高精度的全光纤偏振控制方法. 物理学报, 2013, 62(8): 084217. doi: 10.7498/aps.62.084217
  • 引用本文:
    Citation:
计量
  • 文章访问数:  612
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 修回日期:  2016-09-28
  • 刊出日期:  2017-01-05

基于色散效应的光纤光栅高速高精度解调方法研究

  • 1. 武汉理工大学, 光纤传感技术与信息处理教育部重点实验室, 武汉 430070;
  • 2. 武汉理工大学, 光纤传感技术国家工程实验室, 武汉 430070
  • 通信作者: 李政颖, zhyli@whut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61575149)资助的课题.

摘要: 利用普通单模光纤(SMF)与色散补偿光纤(DCF)分别具有正色散和负色散系数特性,实现光纤光栅阵列的高速高精度解调.系统采用全光纤结构,仅需发出单一高速光脉冲,即可根据反射光脉冲时延差同时获取各个光栅的波长与位置信息,大幅提高了光纤光栅解调速度;通过建立DCF-SMF双通道和色散差矫正模型,削弱了温度变化及色散值误差对系统解调精度的影响.实验表明,本方法解调速率可达1 MHz,解调过程受传感网络光纤及双通道温变影响较小,具有良好稳定性及高精度;5–75℃温度扰动实验中,传感网络传输光纤温变时系统解调均方差16.8 pm,DCF-SMF双通道受温度扰动时系统解调均方差为11.9 pm,恒温下系统长时间解调时均方差为6.4 pm;应力实验中,解调线性度可达0.9998,解调精度约为8.5 pm.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回