搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种利用布里渊增益谱边带解调提高布里渊光时域反射系统测温精度的方法

刘瑞霞 张明江 张建忠 刘毅 靳宝全 白清 李哲哲

引用本文:
Citation:

一种利用布里渊增益谱边带解调提高布里渊光时域反射系统测温精度的方法

刘瑞霞, 张明江, 张建忠, 刘毅, 靳宝全, 白清, 李哲哲

Temperature measurement accuracy enhancement in the Brillouin optical time domain reflectometry system using the sideband of Brillouin gain spectrum demodulation

Liu Rui-Xia, Zhang Ming-Jiang, Zhang Jian-Zhong, Liu Yi, Jin Bao-Quan, Bai Qing, Li Zhe-Zhe
PDF
导出引用
  • 测温精度是衡量分布式光纤温度传感系统的一项重要性能指标.本文提出一种通过解调布里渊增益谱边带,以提高布里渊光时域反射仪测温精度的方法.在此基础上,进一步分析并验证了探测光脉冲峰值功率对测温精度的影响.理论分析表明,利用声光调制器的频移特性可产生布里渊增益谱边带,相比于中心峰解调方法,采用布里渊增益谱边带解调法可获得更高的系统信噪比,进而提高系统测温精度.实验结果表明,在相同测量条件下,布里渊增益谱左边带峰值功率较其中心峰峰值功率高3.27 dB,且其-1 dB谱宽比中心峰窄14.5 MHz.对布里渊增益谱左边带进行频率扫描,由于相干探测时参考光的作用以及消除了相干瑞利噪声的影响,系统信噪比提高了4.35 dB,并在10.2 km的传感距离上实现了0.5℃的测温精度.
    A novel method by demodulating the sideband of Brillouin gain spectrum (BGS) is proposed and demonstrated in order to enhance temperature measurement accuracy in a Brillouin optical time domain reflectometry (BOTDR) sensing system in this paper.Firstly,the characteristic of frequency shift of an acoustic optical modulator (AOM) is utilized to generate the sideband of BGS,and the influence of the peak power of the probe optical pulse on the temperature measurement accuracy is also investigated.Moreover,the theoretical analysis shows that benefiting from the reference continuous light from the source laser by the coherent detection,the intensity of the sideband is higher than that of the central peak,which indicates that the higher signal-to-noise ratio (SNR) can be expected by demodulating the sideband of BGS instead of the central peak.Thus the demodulating the sideband of BGS can further improve temperature measurement accuracy in the BOTDR sensing system theoretically.Secondly,the experimental setup of the distributed temperature sensing system based on BOTDR is built.The AOM is selected as the optical pulse modulator to produce high-extinction-ratio probe pulse light,following the frequency upshift of the injection light.The beat signal generated by coherently detecting the backscattering light from the fiber under test (FUT) and the reference light from the source laser is acquired.Furthermore,the central peak and the left sideband of BGS are respectively scanned by using microwave heterodyne frequency shift technique.The time domain waveforms at each frequency point are then obtained and Lorentzian curve fitting is performed at each sampling position,thus Brillouin frequency shift (BFS) along the FUT is plotted and the temperature is demodulated along the FUT based on the linear dependence of the BFS on the temperature in the optical fiber.Finally,the experimental results show that the peak power of the left sideband of Brillouin gain spectrum is about 3.27 dB stronger than that of the central peak.Meanwhile,the linewidth of left sideband of BGS is about 14.7 MHz narrower than that of the central peak at -1 dB point in the same conditions.When the left sideband of BGS is scanned,the SNR of the BOTDR system is improved by 4.35 dB due to the contribution of the reference light by coherently detecting and eliminating the effect of the coherent Rayleigh noise,and then the temperature measurement accuracy of 0.5℃ is achieved over a 10.2 km sensing fiber.
      通信作者: 张明江, zhangmingjiang@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377089,61527819)、山西省煤基重点科技攻关项目(批准号:MQ2014-09)和山西省煤层气联合研究基金(批准号:2015012005)资助的课题.
      Corresponding author: Zhang Ming-Jiang, zhangmingjiang@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377089, 61527819), the Key Science and Technology Research Project Based on Coal of Shanxi Province, China (Grant No. MQ2014-09), and the Coal-Bed Methane Joint Research Fund of Shanxi Province, China (Grant No. 2015012005).
    [1]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展 46 29]

    [2]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [3]

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681 (in Chinese)[刘铁根, 王双, 江俊峰, 刘琨, 尹金德2014仪器仪表学报 35 1681]

    [4]

    Leung C K Y, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z, Ou J P, Ghandehari M, Wu H C 2015 Mater. Struct. 48 871

    [5]

    Zhang C, Rao Y J, Jia X H, Deng K, Chang L, Ran Z L 2011 Acta Phys. Sin. 60 104211 (in Chinese)[张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令2011物理学报 60 104211]

    [6]

    Bao X Y, Chen L 2012 IEEE Sensors 12 8601

    [7]

    Xia H Y, Zhang C X, Mu H Q, Sun D S 2009 Appl. Opt. 48 189

    [8]

    Hu J C, Chen B, Li G Y, Lin Z Q 2010 Advanced Sensor Systems and Applications Iv Beijing, China, October 18-20, 2010 p785309

    [9]

    Wang F, Li C L, Zhao X D, Zhang X P 2012 Appl. Opt. 51 176

    [10]

    Wang F, Zhang X P, Wang X C, Chen H S 2013 Opt. Lett. 38 2437

    [11]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [12]

    Song M P, Xia Q L, Feng K B, Lu Y, Yin C 2016 Opt. Quan. Electron. 48 30

    [13]

    Maughan S M, Kee H H, Newson T P 2001 IEEE Photon. Technol. Lett. 13 511

    [14]

    Snoddy J, Li Y, Ravet F, Bao X Y 2007 Appl. Opt. 46 1482

    [15]

    Hao Y Q, Ye Q, Pan Z Q, Yang F, Cai H W, Qu R H, Zhang Q Y, Yang Z M 2012 IEEE Photon. J. 4 1686

    [16]

    Lu Y G, Yao Y G, Zhao X D, Wang F, Zhang X P 2013 Opt. Commun. 297 48

    [17]

    Zhang Y X, Wu X L, Ying Z F, Zhang X P 2014 Electron. Lett. 50 1014

    [18]

    Kurashima T, Horiguchi T, Izumita H, Furukawa S, Koyamada Y 1993 IEICE Trans. Commun. 76 382

    [19]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1994 J. Lightwave Technol. 12 730

    [20]

    Kwon H, Kim S, Yeom S, Kang B, Kim K, Kim T, Jang H, Kim J, Kang S 2013 Opt. Commun. 294 59

    [21]

    Wang R G 2012 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[王如刚2012博士学位论文(南京:南京大学)]

    [22]

    Liu J W, Du Z H, Qi R B, Xu K X 2012 Nanotech. Prec. Eng. 10 332 (in Chinese)[刘景旺, 杜振辉, 齐汝宾, 徐可欣2012纳米技术与精密工程 10 332]

    [23]

    Li Z L, Yan L S, Peng Y L, Pan W, Luo B, Shao L Y 2015 Opt. Express 23 5744

    [24]

    Souza K D 2006 Meas. Sci. Technol. 17 1065

    [25]

    Cahill J P, Okusaga O, Zhou W M, Menyuk C R, Carter G M 2015 Opt. Express 23 6400

    [26]

    Xie S R 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[谢尚然2013博士学位论文(北京:清华大学)]

    [27]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

  • [1]

    Liu D M, Sun Q Z 2009 Laser Optoelect. Prog. 46 29 (in Chinese)[刘德明, 孙琪真2009激光与光电子学进展 46 29]

    [2]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报 59 6219]

    [3]

    Liu T G, Wang S, Jiang J F, Liu K, Yin J D 2014 Chin. J. Sci. Instrum. 35 1681 (in Chinese)[刘铁根, 王双, 江俊峰, 刘琨, 尹金德2014仪器仪表学报 35 1681]

    [4]

    Leung C K Y, Wan K T, Inaudi D, Bao X Y, Habel W, Zhou Z, Ou J P, Ghandehari M, Wu H C 2015 Mater. Struct. 48 871

    [5]

    Zhang C, Rao Y J, Jia X H, Deng K, Chang L, Ran Z L 2011 Acta Phys. Sin. 60 104211 (in Chinese)[张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令2011物理学报 60 104211]

    [6]

    Bao X Y, Chen L 2012 IEEE Sensors 12 8601

    [7]

    Xia H Y, Zhang C X, Mu H Q, Sun D S 2009 Appl. Opt. 48 189

    [8]

    Hu J C, Chen B, Li G Y, Lin Z Q 2010 Advanced Sensor Systems and Applications Iv Beijing, China, October 18-20, 2010 p785309

    [9]

    Wang F, Li C L, Zhao X D, Zhang X P 2012 Appl. Opt. 51 176

    [10]

    Wang F, Zhang X P, Wang X C, Chen H S 2013 Opt. Lett. 38 2437

    [11]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [12]

    Song M P, Xia Q L, Feng K B, Lu Y, Yin C 2016 Opt. Quan. Electron. 48 30

    [13]

    Maughan S M, Kee H H, Newson T P 2001 IEEE Photon. Technol. Lett. 13 511

    [14]

    Snoddy J, Li Y, Ravet F, Bao X Y 2007 Appl. Opt. 46 1482

    [15]

    Hao Y Q, Ye Q, Pan Z Q, Yang F, Cai H W, Qu R H, Zhang Q Y, Yang Z M 2012 IEEE Photon. J. 4 1686

    [16]

    Lu Y G, Yao Y G, Zhao X D, Wang F, Zhang X P 2013 Opt. Commun. 297 48

    [17]

    Zhang Y X, Wu X L, Ying Z F, Zhang X P 2014 Electron. Lett. 50 1014

    [18]

    Kurashima T, Horiguchi T, Izumita H, Furukawa S, Koyamada Y 1993 IEICE Trans. Commun. 76 382

    [19]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1994 J. Lightwave Technol. 12 730

    [20]

    Kwon H, Kim S, Yeom S, Kang B, Kim K, Kim T, Jang H, Kim J, Kang S 2013 Opt. Commun. 294 59

    [21]

    Wang R G 2012 Ph. D. Dissertation (Nanjing:Nanjing University) (in Chinese)[王如刚2012博士学位论文(南京:南京大学)]

    [22]

    Liu J W, Du Z H, Qi R B, Xu K X 2012 Nanotech. Prec. Eng. 10 332 (in Chinese)[刘景旺, 杜振辉, 齐汝宾, 徐可欣2012纳米技术与精密工程 10 332]

    [23]

    Li Z L, Yan L S, Peng Y L, Pan W, Luo B, Shao L Y 2015 Opt. Express 23 5744

    [24]

    Souza K D 2006 Meas. Sci. Technol. 17 1065

    [25]

    Cahill J P, Okusaga O, Zhou W M, Menyuk C R, Carter G M 2015 Opt. Express 23 6400

    [26]

    Xie S R 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[谢尚然2013博士学位论文(北京:清华大学)]

    [27]

    Dong Y K, Jiang T F, Teng L, Zhang H Y, Chen L, Bao X Y, Lu Z W 2014 Opt. Lett. 39 2967

  • [1] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器. 物理学报, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感. 物理学报, 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [3] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响. 物理学报, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [4] 高玮, 刘胜男, 毕雅凤, 胡晓博, 浦绍质, 赵洪. 液芯光纤中基于多线抽运调制的带宽可控平顶布里渊增益谱. 物理学报, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [5] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响. 物理学报, 2011, 60(10): 104211. doi: 10.7498/aps.60.104211
    [6] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究. 物理学报, 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [7] 郑狄, 潘炜, 闫连山, 罗斌, 邹喜华, 江宁, 马雅男. 基于一种优化的梳状布里渊增益谱实现对任意周期信号的零展宽快慢光. 物理学报, 2010, 59(2): 1040-1046. doi: 10.7498/aps.59.1040
    [8] 张旨遥, 周晓军, 石胜辉, 梁锐. 矩形谱宽带光抽运的布里渊慢光中脉冲失真的分析. 物理学报, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [9] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统. 物理学报, 2010, 59(8): 5523-5527. doi: 10.7498/aps.59.5523
    [10] 刘圣, 张鹏, 肖发俊, 甘雪涛, 赵建林. 基于布里渊区谱的二维光子晶格线性缺陷模式分析. 物理学报, 2009, 58(8): 5467-5472. doi: 10.7498/aps.58.5467
    [11] 杨 珺, 阮双琛, 张 敏. 抽运光对双布里渊放大池放大控制脉冲波形的影响. 物理学报, 2008, 57(6): 3543-3546. doi: 10.7498/aps.57.3543
    [12] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [13] 杨 珺, 吕志伟, 何伟明, 阮双琛. 双布里渊放大池放大控制脉冲波形的研究. 物理学报, 2007, 56(8): 4622-4626. doi: 10.7498/aps.56.4622
    [14] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [15] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究. 物理学报, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [16] 哈斯乌力吉, 吕志伟, 何伟明, 王双义. 利用不同介质进行布里渊放大的研究. 物理学报, 2005, 54(2): 742-748. doi: 10.7498/aps.54.742
    [17] 丁迎春, 吕志伟, 何伟明. 受激布里渊放大光脉冲波形的研究. 物理学报, 2003, 52(9): 2165-2169. doi: 10.7498/aps.52.2165
    [18] 丁迎春, 吕志伟, 何伟明. 种子光与抽运光能量比对布里渊放大的影响. 物理学报, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [19] 吕志伟, 丁迎春, 何伟明. 抽运功率密度对布里渊放大的影响. 物理学报, 2002, 51(6): 1286-1290. doi: 10.7498/aps.51.1286
    [20] 薛舫时. 布里渊区中的对称平均点. 物理学报, 1987, 36(6): 814-818. doi: 10.7498/aps.36.814
计量
  • 文章访问数:  5322
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-04
  • 修回日期:  2016-07-20
  • 刊出日期:  2016-12-05

/

返回文章
返回