Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition

Mi Guang-Bao Huang Xu Cao Jing-Xia Wang Bao Cao Chun-Xiao

Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition

Mi Guang-Bao, Huang Xu, Cao Jing-Xia, Wang Bao, Cao Chun-Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Titanium fire in the aero-engine is a typical accident caused by ignition and burning of titanium alloy, which leads to a huge damage. Some articles wrote it as to turn pale at the mention of titanium. Fireproof titanium alloy, a new type of structural titanium alloy with fireproof function, has been developed to prevent titanium from fire hazard and to ensure safe and reliable service of aero-engine. In view of the lack of clear understanding of the microscopic mechanisms found currently for the structural functionality of fireproof titanium alloys, in this work, using frictional ignition technology in oxygen-rich environment (friction oxygen concentration method), associated with in-situ observation, SEM, EDS and XRD analyses, the microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloys are investigated and the element distribution law associated with microscopic mechanism during combustion reaction process is disclosed. Results show that Ti-V-Cr fireproof titanium alloys produce dazzling white light during combustion, with the typical flame characteristics of metal combustion. The generated products after burning are mainly TiO2, V2O5 and Cr2O3 oxides, in the form of dispersive particles and dense continuous body. The dispersive particles are in regular spheric shape, with a size of 10-50 m; the dense continuous products after burning presents divisional feature. After the combustion lasts 18 s, four distinct zones form from the alloy matrix to the combustion surface and they are in the sequence of transitional zone, heat-affected zone fusion zone, and combustion zone, with sizes of 40-50, 200-210, 60-70, and 18-21 m respectively. Further, some small granular shaped bulges exist in the transitional zone, in some fixed directions; in the heat-affected zone, a large number of V-based solid solution and some Ti-based solid solution form, and the titanium containing V-based solid solution is much higher than the needle-like precipitation phase in the matrix. In the fusion zone, there are some V-based solid solutions in most of Ti-based solid solution; while, the combustion zone mainly contains the mixed oxides of Ti, V, and Cr. The V-based solid solution in the heat-affected zone reduces the diffusion rate of titanium to the fusion zone, slowing the preferential reaction between titanium and oxygen in the combustion zone; while the generated mixed oxides of TiO2, V2O5, Cr2O3, etc. in the combustion zone and the solution of oxygen in titanium in the fusion zone jointly prevent the diffusion of oxygen to the alloy matrix, thus the Ti-V-Cr fireproof titanium alloys can have excellent fireproof functions.
      Corresponding author: Mi Guang-Bao, miguangbao@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51471155) and the Aviation Science Foundation of China (Grant No. 20123021004).
    [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1] Zhao Dai-Ping, Jing Tao, Liu Bai-Cheng. Simulating the three-dimensional dendritic growth of Al alloy using the phase-fi eld method. Acta Physica Sinica, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [2] Ding Yong, Chen Ren-Jie, Guo Shuai, Liu Xing-Ming, Lee Dong, Yan A-Ru. Effect of Dy additive on microstructure and magnetic propertiesof rapidly solidified Nd-Fe-B strips. Acta Physica Sinica, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [3] You Jia-Xue,  Wang Jin-Cheng,  Wang Li-Lin,  Wang Zhi-Jun,  Li Jun-Jie,  Lin Xin. Recent progress of solidification of suspensions. Acta Physica Sinica, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [4] Zhu Chang-Sheng, Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [5] Liu Gui-Li. The electronic structure of the microstructure of Mg-Zr alloys. Acta Physica Sinica, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [6] Liu Gui-Li. Theoretical study of ignition-proof mechanism of RE element in Mg alloys. Acta Physica Sinica, 2008, 57(1): 434-437. doi: 10.7498/aps.57.434
    [7] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [8] Liu Tao, Guo Zhao-Hui, Li Xiu-Mei, Li Wei. Effect of microstructure on the magnetic properties of Pt-Co permanent magnetic alloy. Acta Physica Sinica, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [9] Li Rui, Zuo Xiao-Wei, Wang En-Gang. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy. Acta Physica Sinica, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [10] Yang Sen, Su YunPeng, Huang Wei Dong, Zhou YaoHe. Microstructure characteristics of Cu31.4%Mn alloyunder laser rapid solidification condition. Acta Physica Sinica, 2003, 52(1): 81-86. doi: 10.7498/aps.52.81
    [11] Zhang Guo-Ying, Zhang Hui, Fang Ge-Liang, Li Yu-Cai. A study on the mechanism of the influence of Bi, Sb alloying on microstructure and properties of AZ91 magnesium alloy. Acta Physica Sinica, 2005, 54(11): 5288-5292. doi: 10.7498/aps.54.5288
    [12] Guo Yu-Fu, Li Rong-De, Liu Gui-Li. The ignition-proof effect of Ca and Be in Mg alloys. Acta Physica Sinica, 2009, 58(5): 3315-3318. doi: 10.7498/aps.58.3315
    [13] Liu Gui-Li, Li Yong. The electronic theory study on high-temperature oxidation mechanism of TiAl alloy. Acta Physica Sinica, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [14] ZHANG JIA-TAI, HE BIN, HE XIAN-TU, CHANG TIE-QIANG, XU LIN-BAO, N.E.ANDEREEV. STUDY ON THE MECHANISM OF THE FAST IGNITION IN LASER FUSION . Acta Physica Sinica, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
    [15] Li Zhi-Qiang, Wang Wei-Li, Zhai Wei, Wei Bing-Bo. Formation mechanism of layered microstructure and monotectic cell within rapidly solidified Fe62.1Sn27.9Si10 alloy. Acta Physica Sinica, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [16] Hou Zhao-Yang, Liu Li-Xia, Liu Rang-Su, Tian Ze-An. Simulation of evolution mechanisms of microstructures during rapid solidification of Al-Mg alloy melt. Acta Physica Sinica, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] Liang Yong-Chao, Liu Rang-Su, Zhu Xuan-Min, Zhou Li-Li, Tian Ze-An, Liu Quan-Hui. Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy. Acta Physica Sinica, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [18] Liang Xian-Ye, Mi Guang-Bao, Li Pei-Jie, Huang Xu, Cao Chun-Xiao. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Physica Sinica, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [19] Zhu Hong-Qiang, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules. Acta Physica Sinica, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [20] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
  • Citation:
Metrics
  • Abstract views:  1188
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2015
  • Accepted Date:  25 December 2015
  • Published Online:  05 March 2016

Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition

    Corresponding author: Mi Guang-Bao, miguangbao@163.com
  • 1. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Beijing Institute of Aeronautical Materials, Beijing 100095, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51471155) and the Aviation Science Foundation of China (Grant No. 20123021004).

Abstract: Titanium fire in the aero-engine is a typical accident caused by ignition and burning of titanium alloy, which leads to a huge damage. Some articles wrote it as to turn pale at the mention of titanium. Fireproof titanium alloy, a new type of structural titanium alloy with fireproof function, has been developed to prevent titanium from fire hazard and to ensure safe and reliable service of aero-engine. In view of the lack of clear understanding of the microscopic mechanisms found currently for the structural functionality of fireproof titanium alloys, in this work, using frictional ignition technology in oxygen-rich environment (friction oxygen concentration method), associated with in-situ observation, SEM, EDS and XRD analyses, the microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloys are investigated and the element distribution law associated with microscopic mechanism during combustion reaction process is disclosed. Results show that Ti-V-Cr fireproof titanium alloys produce dazzling white light during combustion, with the typical flame characteristics of metal combustion. The generated products after burning are mainly TiO2, V2O5 and Cr2O3 oxides, in the form of dispersive particles and dense continuous body. The dispersive particles are in regular spheric shape, with a size of 10-50 m; the dense continuous products after burning presents divisional feature. After the combustion lasts 18 s, four distinct zones form from the alloy matrix to the combustion surface and they are in the sequence of transitional zone, heat-affected zone fusion zone, and combustion zone, with sizes of 40-50, 200-210, 60-70, and 18-21 m respectively. Further, some small granular shaped bulges exist in the transitional zone, in some fixed directions; in the heat-affected zone, a large number of V-based solid solution and some Ti-based solid solution form, and the titanium containing V-based solid solution is much higher than the needle-like precipitation phase in the matrix. In the fusion zone, there are some V-based solid solutions in most of Ti-based solid solution; while, the combustion zone mainly contains the mixed oxides of Ti, V, and Cr. The V-based solid solution in the heat-affected zone reduces the diffusion rate of titanium to the fusion zone, slowing the preferential reaction between titanium and oxygen in the combustion zone; while the generated mixed oxides of TiO2, V2O5, Cr2O3, etc. in the combustion zone and the solution of oxygen in titanium in the fusion zone jointly prevent the diffusion of oxygen to the alloy matrix, thus the Ti-V-Cr fireproof titanium alloys can have excellent fireproof functions.

Reference (39)

Catalog

    /

    返回文章
    返回