搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近α型高温钛合金起燃机理

吴明宇 弭光宝 李培杰

引用本文:
Citation:

近α型高温钛合金起燃机理

吴明宇, 弭光宝, 李培杰

Ignition mechanism of near α high temperature titanium alloy

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie
PDF
HTML
导出引用
  • 采用激光氧浓度实验方法, 研究激光功率和氧浓度对近α型高温钛合金(TA19合金)燃烧状态的影响, 发现合金的起燃温度随激光功率和氧浓度的增加而降低, 在200—325 W的激光功率以及21%—60%的氧体积浓度条件下, TA19合金的起燃温度为1527—1595 ℃, 低于合金熔点. 通过组织表征揭示保护性氧化层的失效形式, 并结合氧化层应力失效模型分析起燃机理: 1520 ℃以上TiO的高蒸气压特性导致表层TiO2下方形成孔隙缺陷, 加速TiO2层的热应力失效; 且起燃时需要同时满足临界温度条件和瞬时温度变化率条件. 在此基础上, 将保护性氧化层失效机理与能量方程结合以构建起燃模型; 根据实验数据拟合计算得到TA19合金在起燃阶段的反应激活能约为280 kJ/mol, 并得出起燃温度随激光功率和氧浓度变化的函数关系为$ 1.2 \times {10^{10}}{{\mathrm{exp}}\Big({\dfrac{{ - 280000}}{{R{T_{{\text{ig}}}}}}}}\Big) {c^{\frac{1}{2}}} + 0.52{P_{\text{L}}} - 315 = 0 $. 该结果对航空发动机复杂气流条件下的阻燃性能研究及其他类型钛合金的起燃温度预测提供理论参考.
    The risk of titanium fire increases significantly with the development of future aero-engine, however, the burning mechanisms of titanium alloys remain uncertain. Therefore, the ignition behavior and mechanism of near α high-temperature titanium alloy are studied in this work by an integrated experiment method, including laser-oxygen concentration ignition method, infrared temperature measurement and observation of molten metal by high-speed camera. Based on this, the ignition boundary curve is determined and the ignition temperature of the alloy is found to decrease from 1595 to 1527 ℃ with the laser power increasing from 200 to 325 W and oxygen concentration increasing from 21% to 60%. The ignition microstructure is characterized by FIB and TEM to study the evolution of reaction products. Pores are found to form beneath the TiO2 surface layer, which can be attributed to the instablity of TiO. The failure mechanism of protective oxide layer is further analyzed according to the thermal stress caused oxide layer damage model. When the temperature approaches the ignition temperature, which is below the melting point, the high vapor pressure of TiO leads to the formation of porous defects beneath the TiO2 surface, thus accelerating the fracture and failure of the TiO2 layer under thermal stress. It is revealed that critical conditions of temperature and instantaneous temperature change rate are needed to realize ignition. Based on this, an ignition model is further constructed to discuss the relationship among ignition temperature, laser power and oxgyen concentration. According to the experimental data fitting, the reaction activation energy of TA19 alloy during the ignition stage is calculated to be about 280 kJ/mol, and the function for calculating ignition temperature is given as follows: $ 1.2 \times {10^{10}}{{\mathrm{e}}^{\frac{{ - 280000}}{{R{T_{{\text{ig}}}}}}}}{c^{\frac{1}{2}}} + $$ 0.52{P_{\mathrm{L}}} - 315 = 0 $. This provides a theoretical reference for predicting the ignition temperatures of near α high temperature titanium alloy and other types of titanium alloys under complex airflow conditions in aircraft engines.
      通信作者: 弭光宝, guangbao.mi@biam.ac.cn
    • 基金项目: 国家自然科学基金“叶企孙”科学基金(批准号: U2141222)和国家科技重大专项(批准号: J2019-VIII-0003-0165)资助的课题.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the “Ye Qisun” Science Fund Project of the National Natural Science Foundation of China (Grant No. U2141222) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. J2019-VIII-0003-0165).
    [1]

    弭光宝, 谭勇, 陈航, 李培杰, 张学军 2024 航空材料学报 44 15Google Scholar

    Mi G B, Tan Y, Chen H, Li P J, Zhang X J 2024 J. Aeronaut. Mater. 44 15Google Scholar

    [2]

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Technol. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Technol. 15 1326

    [6]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409Google Scholar

    [7]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Met. Mater. Eng. 28 77

    [8]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [9]

    Shao L, Xie G L, Liu X H, Wu Y, Tan Q, Xie L, Xin S W, Hao F, Yu J B, Xue W L, Feng K 2022 Corros. Sci. 194 109957Google Scholar

    [10]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [11]

    Rozenband V I, Vaganova N I 1992 Combust. Flame 88 113Google Scholar

    [12]

    弭光宝, 黄旭, 曹京霞, 曹春晓 2012 航空材料学报 32 25Google Scholar

    Mi G B, Huang X, Cao J X, Cao C X 2012 J. Aeronaut. Mater. 32 25Google Scholar

    [13]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [14]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [15]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 65 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 65 216101Google Scholar

    [16]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [17]

    Bolobov V I, Podlevskikh N A 2007 Combust. Explos. Shock Waves 43 405Google Scholar

    [18]

    Titanium Combustion Research Program and user's Manual for Deck CCD 1152-0.0, Glickstein M R http://apps.dtic.mil/ [2023-12-4]

    [19]

    弭光宝, 陈航 中国专利, ZL201711188505.5 [2017-11-23]]

    Mi G B, Chen H Chinese Patent ZL201711188505.5 [2017-11-23]

    [20]

    黄伯云, 李成功, 石力开 2006 中国材料工程大典 (北京: 化学工业出版社) 第550页

    Huang B Y, Li C G, Shi L K 2006 China Materials Engineering Cannon (Beijing: Chemistry Industry Press) p550

    [21]

    Evans H E, Lobb R C 1984 Corros. Sci. 24 209Google Scholar

    [22]

    Evans H E, Lobb R C 1994 Mater. High Temp. 12 219Google Scholar

    [23]

    Park Y S, Butt D P 1998 Oxid. Met. 51 383

    [24]

    杨德钧, 沈卓身1999 金属腐蚀学(第一版) (北京: 冶金工艺出版社) 第11页

    Yang D J, Shen Z S 1999 Metal Corrosion (Vol. 1) (Beijing: Metallurgical Industry Press) p11

    [25]

    Bohle M, Etling D, Muller U, Sreenivasan K R S, Riedel U, Warnatz J 2004 Prandtl’s Essentials of Fluid Mechanics (Heidelberg: Springer) (2nd Ed.) p428

    [26]

    Liu Z, Welsch G 1988 Metall. Trans. A 19 1121Google Scholar

    [27]

    Gaddam R, Sefer B, Pederson R, Antti M L 2015 Mater. Charact. 99 166Google Scholar

  • 图 1  (a) 激光着火装置; (b) SEM样品制备方法示意图

    Fig. 1.  Schematic diagram of (a) laser ignition equipment and (b) preparation method of samples for SEM observation.

    图 2  不同激光功率和氧体积浓度下, TA19合金的宏观燃烧形貌

    Fig. 2.  Macro morphology of TA19 alloy burned at different laser powers and oxygen volume contents.

    图 3  TA19合金试样燃烧形貌示意图

    Fig. 3.  Schematic diagram of the burning morphology of TA19 alloy.

    图 4  BL及BA随激光功率和氧浓度的变化规律 (a) 200 W; (b) 225 W; (c) 250 W; (d) 275 W; (e) 300 W; (f) 325 W

    Fig. 4.  The variation law of BL and BA with laser power and oxygen concentration: (a) 200 W; (b) 225 W; (c) 250 W; (d) 275 W; (e) 300 W; (f) 325 W.

    图 5  未燃烧TA19合金的温度及熔体特征 (a) 温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Fig. 5.  The temperature and melt characteristics of unburnt TA19 alloy: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 6  起燃并扩展TA19合金的温度及熔体特征 (a) 起燃前后的温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Fig. 6.  The temperature and melt characteristics of TA19 alloy with ignition and extended combustion: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 7  持续燃烧TA19合金的温度特征 (a) 温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Fig. 7.  The temperature and melt characteristics of TA19 alloy with sustained burning: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 8  TA19合金的临界燃烧曲线

    Fig. 8.  Critical burning curves of TA19 alloy.

    图 9  起燃温度随激光功率和氧体积浓度变化的实验测量结果

    Fig. 9.  Experimental results of ignition temperature varied with laser power and oxygen concentration.

    图 10  未发生燃烧TA19合金显微组织的SEM观察结果

    Fig. 10.  SEM observation of the unburnt TA19 alloy microstructure.

    图 11  TA19合金起燃组织的SEM形貌 (a) 300 W激光功率和21%氧体积浓度条件形成的起燃组织整体形貌; (b) 图(a)熔凝区放大形貌; (c) 300 W激光功率和25%氧体积浓度条件形成的起燃组织形貌; (d) FIB取样位置示意图

    Fig. 11.  SEM microstructure of ignited TA19 alloy: (a) Overall microstructure formed under 300 W laser power and 21% oxygen volume concentration; (b) enlarged view of Figure (a); (c) microstructure formed under 300 W laser power and 25% oxygen volume concentration; (d) schematic diagram of FIB sampling location.

    图 12  TA19合金起燃组织燃烧区/熔凝区界面的TEM表征结果 (a) 明场像; (b) 暗场像; (c) Ti2O3 + Al2O3混合区域放大图像; (d) Al元素分布; (e) Ti元素分布; (f) O元素分布; (g) 位置1的SAED结果; (h) 位置2的SAED结果; (i) 位置3的SAED结果; (j) 位置4的SAED结果

    Fig. 12.  TEM characterization results of the combustion zone/melting zone interface of ignited TA19 alloy: (a) Bright field image; (b) dark field image; (c) enlarged view of Ti2O3 + Al2O3 mixed region; (d) Al element distribution; (e) Ti element distribution; (f) O element distribution; (g) SAED pattern at position 1; (h) SAED pattern at position 2; (i) SAED pattern at position 3; (j) SAED pattern at position 4.

    图 13  钛合金起燃过程的保护性氧化层应力失效模型 (a) Evans和Lobb[21,22]提出的基本模型; (b) 起燃前形成的氧化层在孔隙缺陷影响下发生开裂; (c) 起燃后新形成的氧化层不能保持结构稳定

    Fig. 13.  Stress failure model of oxide layer during the ignition of titanium alloy: (a) Basic model proposed by Evans and Lobb[21,22]; (b) the oxide layer formed before ignition cracks under the influence of pore defects; (c) the newly formed oxide layer after ignition cannot maintain stability.

    图 14  发生起燃TA19合金的缺陷尺寸统计图

    Fig. 14.  Statistical chart of defect size of ignited TA19 alloy.

    图 15  激光功率、氧体积浓度和起燃温度的部分实验结果与拟合关系

    Fig. 15.  Partial experimental results and fitting relationships of laser power, oxygen volume concent, and ignition temperature.

    图 16  TA19合金起燃与氧化过程反应活化能的比较

    Fig. 16.  Comparison of activation energies for the ignition and oxidation processes of TA19 alloy.

    表 1  TA19合金起燃组织的元素分布

    Table 1.  Element distribution in the ignited TA19 alloy.

    元素原子数含量/%位置1位置2位置3位置4位置5位置6位置7
    Ti80.570.242.732.759.88.342.5
    Al10.38.918.22.25.429.21.2
    Zr2.13.20.70.70.30.20.2
    Mo1.21.50.20.20.30.30.3
    Sn1.12.10.10.10.20.20.2
    O4.814.138.164.134.059.655.6
    下载: 导出CSV

    表 2  TA19合金起燃点瞬时温度变化率的实验测量值

    Table 2.  Measured results of instantaneous temperature change rate of TA19 alloy at ignition temperature.

    激光功率PL/W 氧浓度c/% 起燃点瞬时温度
    变化率/(℃·s–1)
    225 34 305
    225 38 305
    250 32 300
    250 34 300
    250 38 310
    275 32 300
    275 35 325
    300 25 330
    300 30 310
    300 32 295
    300 34 305
    300 40 295
    300 50 300
    300 60 300
    325 21 330
    325 60 320
    下载: 导出CSV
  • [1]

    弭光宝, 谭勇, 陈航, 李培杰, 张学军 2024 航空材料学报 44 15Google Scholar

    Mi G B, Tan Y, Chen H, Li P J, Zhang X J 2024 J. Aeronaut. Mater. 44 15Google Scholar

    [2]

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Technol. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Technol. 15 1326

    [6]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409Google Scholar

    [7]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Met. Mater. Eng. 28 77

    [8]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [9]

    Shao L, Xie G L, Liu X H, Wu Y, Tan Q, Xie L, Xin S W, Hao F, Yu J B, Xue W L, Feng K 2022 Corros. Sci. 194 109957Google Scholar

    [10]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [11]

    Rozenband V I, Vaganova N I 1992 Combust. Flame 88 113Google Scholar

    [12]

    弭光宝, 黄旭, 曹京霞, 曹春晓 2012 航空材料学报 32 25Google Scholar

    Mi G B, Huang X, Cao J X, Cao C X 2012 J. Aeronaut. Mater. 32 25Google Scholar

    [13]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [14]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [15]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 65 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 65 216101Google Scholar

    [16]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [17]

    Bolobov V I, Podlevskikh N A 2007 Combust. Explos. Shock Waves 43 405Google Scholar

    [18]

    Titanium Combustion Research Program and user's Manual for Deck CCD 1152-0.0, Glickstein M R http://apps.dtic.mil/ [2023-12-4]

    [19]

    弭光宝, 陈航 中国专利, ZL201711188505.5 [2017-11-23]]

    Mi G B, Chen H Chinese Patent ZL201711188505.5 [2017-11-23]

    [20]

    黄伯云, 李成功, 石力开 2006 中国材料工程大典 (北京: 化学工业出版社) 第550页

    Huang B Y, Li C G, Shi L K 2006 China Materials Engineering Cannon (Beijing: Chemistry Industry Press) p550

    [21]

    Evans H E, Lobb R C 1984 Corros. Sci. 24 209Google Scholar

    [22]

    Evans H E, Lobb R C 1994 Mater. High Temp. 12 219Google Scholar

    [23]

    Park Y S, Butt D P 1998 Oxid. Met. 51 383

    [24]

    杨德钧, 沈卓身1999 金属腐蚀学(第一版) (北京: 冶金工艺出版社) 第11页

    Yang D J, Shen Z S 1999 Metal Corrosion (Vol. 1) (Beijing: Metallurgical Industry Press) p11

    [25]

    Bohle M, Etling D, Muller U, Sreenivasan K R S, Riedel U, Warnatz J 2004 Prandtl’s Essentials of Fluid Mechanics (Heidelberg: Springer) (2nd Ed.) p428

    [26]

    Liu Z, Welsch G 1988 Metall. Trans. A 19 1121Google Scholar

    [27]

    Gaddam R, Sefer B, Pederson R, Antti M L 2015 Mater. Charact. 99 166Google Scholar

  • [1] 吴明宇, 弭光宝, 李培杰, 黄旭. 600 ℃高温钛合金燃烧组织演变及机理. 物理学报, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [2] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [3] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [4] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] 郭春生, 万宁, 马卫东, 张燕峰, 熊聪, 冯士维. 恒定温度应力加速实验失效机理一致性快速判别方法. 物理学报, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [6] 宋海洋, 李玉龙. 堆垛层错和温度对纳米多晶镁变形机理的影响. 物理学报, 2012, 61(22): 226201. doi: 10.7498/aps.61.226201
    [7] 陈代兵, 王冬, 秦奋, 文杰, 金晓, 安海狮, 张新凯. 磁绝缘线振荡器的起振电压与注入电压关系的分析. 物理学报, 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [8] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [9] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响. 物理学报, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [10] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [11] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究. 物理学报, 2010, 59(1): 494-498. doi: 10.7498/aps.59.494
    [12] 杨静, 王治, 贾芸芸, 韩叶梅. FeCo基纳米晶合金高温交换耦合作用机理. 物理学报, 2010, 59(11): 8148-8154. doi: 10.7498/aps.59.8148
    [13] 张国英, 李丹, 梁婷. 铌合金电子结构及其高温氧化行为. 物理学报, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [14] 刘贵立, 杨杰. Nb-Ti-Al合金高温氧化机理电子理论研究. 物理学报, 2010, 59(7): 4939-4944. doi: 10.7498/aps.59.4939
    [15] 刘贵立. Nb-Al合金高温氧化机理. 物理学报, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [16] 张国英, 张辉, 魏丹, 罗志成, 李昱材. Bi,Sb及稀土元素对AZ91镁合金高温性能影响机理研究. 物理学报, 2009, 58(1): 444-449. doi: 10.7498/aps.58.444
    [17] 唐元广, 吴汉华, 常鸿, 陈根余, 桑勇, 白亦真. 阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响. 物理学报, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [18] 吴汉华, 龙北红, 龙北玉, 唐元广, 常 鸿, 白亦真. 钛合金微弧氧化过程中电学参量的特性研究. 物理学报, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [19] 王永刚, 陈登平, 贺红亮, 王礼立, 经福谦. 冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性. 物理学报, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [20] 万发荣, 褚武扬, 肖纪美, 高桥平七郎. Fe-10%Cr铁素体合金中氢对辐照诱起偏析的影响. 物理学报, 1996, 45(3): 464-469. doi: 10.7498/aps.45.464
计量
  • 文章访问数:  312
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-01-30
  • 上网日期:  2024-02-21
  • 刊出日期:  2024-04-20

/

返回文章
返回