Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-scale ordered patterns in photosensitive ternary polymer mixtures

Guo Yu-Qi Pan Jun-Xing Zhang Jin-Jun Sun Min-Na Wang Bao-Feng Wu Hai-Shun

Citation:

Multi-scale ordered patterns in photosensitive ternary polymer mixtures

Guo Yu-Qi, Pan Jun-Xing, Zhang Jin-Jun, Sun Min-Na, Wang Bao-Feng, Wu Hai-Shun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multi-scale ordered patterns of multi-component polymer mixtures can reveal many peculiar chemical and physical properties, which makes these systems have very important potential applications in materials engineering. Via computer simulation, we create interesting ordered multi-scale structures in photosensitive and immiscible polymer mixtures. The system that we employed comprises a ternary, molten A/B/C polymer blends and the three components are mutually immiscible. Polymer C is non-optically active, while polymers A and B can exhibit reversible chemical reaction A ⇆ B induced by light. Firstly, we investigate the phase behavior of the ternary blend guided by cross-stripy mask and light, and find that a chessboard-like ordered pattern forms in the mixture before removing the mask. In the illuminated regions, the A and C components gather into ellipsoidal core-shell structures in the uncrossed illuminated area, while the A and B components gather into star structures in the crossed stripes regions. When we remove the mask, the entire system becomes illuminated, and the reaction A ⇆ B occurs throughout the film: the ellipsoidal core-shell structures of A and C components turn to spherical structures, and the star structures of A and B components turn into concentric square ring structures. Then we show the influences of the number of cross stripes and the initial composition on the formation of structure. The average spatial volume fraction of C component first increases and then decreases with the stripy number increasing and the C component net lattices play an important role in the stability of ordered structures. Secondly, when the blend is covered by the annular mask, the C component gathers to the illuminated regions and the A and B components are in radial arrangement. As a result, the mixture forms an interesting dartboard-like pattern. However, when the mask is removed, the photochemical reactions occur in the A and B components of the whole region, the increasing of free energy induces the dartboard-like pattern to be broken and to change into dots-ring structure and then it forms a perfect concentric ring pattern and the target-like pattern. And also, we show the effects of initial composition ratio of C component, the distance between two adjacent rings D, the ring width d, and the illumination intensity on the evolution of ordered structure. The larger the initial composition ratio of C component, the more easily the ordered target-like pattern forms; the larger the distance D and the smaller the width d, the better the pinning effect of C component is. The illumination intensity has little influence on the ordered morphology of the ternary system. We provide a simple approach to creating multi-scale patterned films with long-range order, which could guide us in fabricating nanoscale devices.
      Corresponding author: Pan Jun-Xing, panjunxing2007@163.com;zhangjinjun@sxnu.edu.cn ; Zhang Jin-Jun, panjunxing2007@163.com;zhangjinjun@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21373131), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Provincial Natural Science Foundation of Shanxi, China (Grant No. 2015011004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Provincial Science and Technology Innovation Project Foundation of Shanxi, China.
    [1]

    Sun M N, Zhang J J, Wang B F, Wu H S, Pan J X 2011 Phys. Rev. E 84 011812

    [2]

    Jang S G, Khan A, Dimitriou M D, Kim B J, Lynd N A, Kramer E J, Hawker C J 2011 Soft Matter 7 6255

    [3]

    Parnell A J, Pryke A, Mykhaylyk O O, Howse J R, Adawi A M, Terrill N J, Fairclough J P A 2011 Soft Matter 7 3721

    [4]

    Hong S W, Gu X D, Huh J, Xiao S G, Russell T P 2011 ACS Nano 5 2855

    [5]

    Bates F S, Maurer W, Lodge T P, Schulz MF, Matsen M W, Almdal K, Mortensen K 1995 Phys. Rev. Lett. 75 4429

    [6]

    Zhang J J, Jin G J, Ma Y Q 2006 J. Phys.: Condens. Matter 18 837

    [7]

    Ruokolainen J, Mäkinen R, Torkkeli M, Mäkelä T, Serimaa R, ten Brinke G, Ikkala O 1998 Science 280 557

    [8]

    Ruokolainen J, Saariaho M, Ikkala O 1999 Macromolecules 32 1152

    [9]

    Travasso R D M, Kuksenok O, Balazs A C 2005 Langmuir 21 10912

    [10]

    Kuksenok O, Travasso R D M, Balazs A C 2006 Phys. Rev. E 74 011502

    [11]

    Travasso R D M, Kuksenok O, Balazs A C 2006 Langmuir 22 2620

    [12]

    Puri S, Kumar D 2004 Phys. Rev. E 70 051501

    [13]

    Lakshmi K C, Kumar P B S 2003 Phys. Rev. E 67 011507

    [14]

    Tafa K, Puri S, Kumar D 2001 Phys. Rev. E 64 056139

    [15]

    Ma Y Q 2001 J. Chem. Phys. 114 3734

    [16]

    Huang C, de la Cruz M O, Swift B W 1996 Macromolecules 28 7996

    [17]

    Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J, Wu H S 2013 Chin. Phys. B 22 096401

    [18]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401

    [19]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 046401

    [20]

    Pinna M, Hiltl S, Guo X H, Böker A, Zvelindovsky A V 2010 ACS Nano 4 2845

    [21]

    Chen H Y, Peng C J, Sun L, Liu H L, Hu Y 2007 Langmuir 23 11112

    [22]

    Chen H Y, Chen X Q, Ye Z C, Liu H L, Hu Y 2010 Langmuir 26 6663

    [23]

    Hao Q H, Miao B, Song Q G, Niu X H, Liu T J 2014 Polymer 55 4281

    [24]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014 Nanoscale 6 6844

    [25]

    Li M, Zhu Y J 2008 Acta Phys. Sin. 57 7555 (in Chinese) [李明, 诸跃进 2008 物理学报 57 7555]

    [26]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [27]

    Zhang J J, Jin G J, Ma Y Q 2005 Phys. Rev. E 71 051803

    [28]

    Pinna M, Zvelindovsky A V 2008 Soft Matter 4 316

    [29]

    Xu T, Craig J H, Russell T P 2003 Macromolecules 36 6178

    [30]

    Böker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V, Krausch G 2006 Polymer 47 849

    [31]

    Schmidt K, Böker A, Zettl H, Schubert F, Hänsel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A, Krausch G 2005 Langmuir 21 11974

    [32]

    Hong Y R, Admson D H, Chainkin P M, Register R A 2009 Soft Matter 5 1687

    [33]

    Chen K, Ma Y Q 2002 J. Chem. Phys. 116 7783

    [34]

    Morozov A N, Zvelindovsky A V, Fraaije J G E M 2001 Phys. Rev. E 64 051803

    [35]

    Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803

    [36]

    You L Y, Chen L J, Qian H J, Lu Z Y 2007 Macromolecules 40 5222

    [37]

    Pan Z Q, He L L, Zhang L X, Liang H J 2011 Polymer 52 2711

    [38]

    Nikoubashman A, Davis R L, Michal B T, Chaikin P M, Register R A, Panagiotopoulos A Z 2014 ACS Nano 8 8015

    [39]

    Nikoubashman A, Register R A, Panagiotopoulos A Z 2013 Soft Matter 9 9960

    [40]

    Guo Y Q, Zhang J J, Wang B F, Wu H S, Sun M N, Pan J X 2015 Condens. Matter Phys. 18 23801

    [41]

    Peng G W, Qiu F, Ginzburg V V, Jasnow D, Balazs A C 2000 Science 288 1802

    [42]

    Deng Z Y, Zhang L X 2015 Acta Phys. Sin. 64 0168201 (in Chinese) [邓真渝, 章林溪 2015 物理学报 64 0168201]

    [43]

    Chen K, Ma Y Q 2002 Phys. Rev. E 65 041501

    [44]

    Zhu Y J, Ma Y Q 2003 Chin. Phys. Lett. 20 703

    [45]

    Zhang J J, Jin G J, Ma Y Q 2005 Eur. Phys. J. E 18 359

    [46]

    Liu Y, Kuksenok O, Balazs A C 2013 Langmuir 29 750

    [47]

    Dayal P, Kuksenok O, Balazs A C 2008 Langmuir 24 1621

    [48]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 076401

    [49]

    Grzybowski B A, Campbell C J 2007 Mater. Today 10 38

    [50]

    Glotzer S C, Stauffer D, Jan N 1994 Phys. Rev. Lett. 72 4109

    [51]

    Qiu T C, Kawai J J, Endoh K 1999 Chaos 9 298

    [52]

    Colvin V L, Larson R G, Harris A L, Schilling M L 1997 J. Appl. Phys. 81 5913

    [53]

    Kellogg G J, Walton D G, Mayes A M 1996 Phys. Rev. Lett. 76 2503

    [54]

    Christensen J J, Elder K, Fogedby H C 1996 Phys. Rev. E 54 R2212

    [55]

    Glotzer S C, Marzio E A Di, Muthukumar M 1995 Phys. Rev. Lett. 74 2034

    [56]

    Purit S, Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027

    [57]

    Tran C Q, Kawai J J, Nishikawa Y, Jinnai H 1999 Phys. Rev. E 60 R1150

    [58]

    Nishioka H, Kida K, Yano O, Tran C Q 2000 Macromolecules 33 4301

    [59]

    Liu B, Tong C H, Yang Y L 2001 J. Phys. Chem.B 105 10091

    [60]

    Tong C H, Yang Y L 2002 J. Chem. Phys. 116 1519

    [61]

    Tong C H, Zhang H D, Yang Y L 2002 J. Phys. Chem. B 106 7869

    [62]

    Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 021804

    [63]

    Okuzono T, Ohta T 2003 Phys. Rev. E 67 056211

    [64]

    Good K, Kuksenok O, Buxton G A, Ginzburg V V, Balazs A C 2004 J. Chem. Phys. 121 6052

    [65]

    Nakanishi H, Satoh M, Norisuye T, Tran C Q 2004 Macromolecules 37 8495

    [66]

    Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836

    [67]

    Puri S, Oono Y 1988 Phys. Rev. A 38 1542

    [68]

    Oono Y, Puri S 1988 Phys. Rev. A 38 434

    [69]

    Travasso R D M, Buxton G A, Kuksenok O, Good K, Balazs A C 2005 J. Chem. Phys. 122 194906 ten Brinke G, Ikkala O 1998 Science 280 557

  • [1]

    Sun M N, Zhang J J, Wang B F, Wu H S, Pan J X 2011 Phys. Rev. E 84 011812

    [2]

    Jang S G, Khan A, Dimitriou M D, Kim B J, Lynd N A, Kramer E J, Hawker C J 2011 Soft Matter 7 6255

    [3]

    Parnell A J, Pryke A, Mykhaylyk O O, Howse J R, Adawi A M, Terrill N J, Fairclough J P A 2011 Soft Matter 7 3721

    [4]

    Hong S W, Gu X D, Huh J, Xiao S G, Russell T P 2011 ACS Nano 5 2855

    [5]

    Bates F S, Maurer W, Lodge T P, Schulz MF, Matsen M W, Almdal K, Mortensen K 1995 Phys. Rev. Lett. 75 4429

    [6]

    Zhang J J, Jin G J, Ma Y Q 2006 J. Phys.: Condens. Matter 18 837

    [7]

    Ruokolainen J, Mäkinen R, Torkkeli M, Mäkelä T, Serimaa R, ten Brinke G, Ikkala O 1998 Science 280 557

    [8]

    Ruokolainen J, Saariaho M, Ikkala O 1999 Macromolecules 32 1152

    [9]

    Travasso R D M, Kuksenok O, Balazs A C 2005 Langmuir 21 10912

    [10]

    Kuksenok O, Travasso R D M, Balazs A C 2006 Phys. Rev. E 74 011502

    [11]

    Travasso R D M, Kuksenok O, Balazs A C 2006 Langmuir 22 2620

    [12]

    Puri S, Kumar D 2004 Phys. Rev. E 70 051501

    [13]

    Lakshmi K C, Kumar P B S 2003 Phys. Rev. E 67 011507

    [14]

    Tafa K, Puri S, Kumar D 2001 Phys. Rev. E 64 056139

    [15]

    Ma Y Q 2001 J. Chem. Phys. 114 3734

    [16]

    Huang C, de la Cruz M O, Swift B W 1996 Macromolecules 28 7996

    [17]

    Zhang L C, Sun M N, Pan J X, Wang B F, Zhang J J, Wu H S 2013 Chin. Phys. B 22 096401

    [18]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401

    [19]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 046401

    [20]

    Pinna M, Hiltl S, Guo X H, Böker A, Zvelindovsky A V 2010 ACS Nano 4 2845

    [21]

    Chen H Y, Peng C J, Sun L, Liu H L, Hu Y 2007 Langmuir 23 11112

    [22]

    Chen H Y, Chen X Q, Ye Z C, Liu H L, Hu Y 2010 Langmuir 26 6663

    [23]

    Hao Q H, Miao B, Song Q G, Niu X H, Liu T J 2014 Polymer 55 4281

    [24]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014 Nanoscale 6 6844

    [25]

    Li M, Zhu Y J 2008 Acta Phys. Sin. 57 7555 (in Chinese) [李明, 诸跃进 2008 物理学报 57 7555]

    [26]

    Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701 (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

    [27]

    Zhang J J, Jin G J, Ma Y Q 2005 Phys. Rev. E 71 051803

    [28]

    Pinna M, Zvelindovsky A V 2008 Soft Matter 4 316

    [29]

    Xu T, Craig J H, Russell T P 2003 Macromolecules 36 6178

    [30]

    Böker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V, Krausch G 2006 Polymer 47 849

    [31]

    Schmidt K, Böker A, Zettl H, Schubert F, Hänsel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A, Krausch G 2005 Langmuir 21 11974

    [32]

    Hong Y R, Admson D H, Chainkin P M, Register R A 2009 Soft Matter 5 1687

    [33]

    Chen K, Ma Y Q 2002 J. Chem. Phys. 116 7783

    [34]

    Morozov A N, Zvelindovsky A V, Fraaije J G E M 2001 Phys. Rev. E 64 051803

    [35]

    Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803

    [36]

    You L Y, Chen L J, Qian H J, Lu Z Y 2007 Macromolecules 40 5222

    [37]

    Pan Z Q, He L L, Zhang L X, Liang H J 2011 Polymer 52 2711

    [38]

    Nikoubashman A, Davis R L, Michal B T, Chaikin P M, Register R A, Panagiotopoulos A Z 2014 ACS Nano 8 8015

    [39]

    Nikoubashman A, Register R A, Panagiotopoulos A Z 2013 Soft Matter 9 9960

    [40]

    Guo Y Q, Zhang J J, Wang B F, Wu H S, Sun M N, Pan J X 2015 Condens. Matter Phys. 18 23801

    [41]

    Peng G W, Qiu F, Ginzburg V V, Jasnow D, Balazs A C 2000 Science 288 1802

    [42]

    Deng Z Y, Zhang L X 2015 Acta Phys. Sin. 64 0168201 (in Chinese) [邓真渝, 章林溪 2015 物理学报 64 0168201]

    [43]

    Chen K, Ma Y Q 2002 Phys. Rev. E 65 041501

    [44]

    Zhu Y J, Ma Y Q 2003 Chin. Phys. Lett. 20 703

    [45]

    Zhang J J, Jin G J, Ma Y Q 2005 Eur. Phys. J. E 18 359

    [46]

    Liu Y, Kuksenok O, Balazs A C 2013 Langmuir 29 750

    [47]

    Dayal P, Kuksenok O, Balazs A C 2008 Langmuir 24 1621

    [48]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. Lett. 30 076401

    [49]

    Grzybowski B A, Campbell C J 2007 Mater. Today 10 38

    [50]

    Glotzer S C, Stauffer D, Jan N 1994 Phys. Rev. Lett. 72 4109

    [51]

    Qiu T C, Kawai J J, Endoh K 1999 Chaos 9 298

    [52]

    Colvin V L, Larson R G, Harris A L, Schilling M L 1997 J. Appl. Phys. 81 5913

    [53]

    Kellogg G J, Walton D G, Mayes A M 1996 Phys. Rev. Lett. 76 2503

    [54]

    Christensen J J, Elder K, Fogedby H C 1996 Phys. Rev. E 54 R2212

    [55]

    Glotzer S C, Marzio E A Di, Muthukumar M 1995 Phys. Rev. Lett. 74 2034

    [56]

    Purit S, Frisch H L 1994 J. Phys. A: Math. Gen. 27 6027

    [57]

    Tran C Q, Kawai J J, Nishikawa Y, Jinnai H 1999 Phys. Rev. E 60 R1150

    [58]

    Nishioka H, Kida K, Yano O, Tran C Q 2000 Macromolecules 33 4301

    [59]

    Liu B, Tong C H, Yang Y L 2001 J. Phys. Chem.B 105 10091

    [60]

    Tong C H, Yang Y L 2002 J. Chem. Phys. 116 1519

    [61]

    Tong C H, Zhang H D, Yang Y L 2002 J. Phys. Chem. B 106 7869

    [62]

    Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 021804

    [63]

    Okuzono T, Ohta T 2003 Phys. Rev. E 67 056211

    [64]

    Good K, Kuksenok O, Buxton G A, Ginzburg V V, Balazs A C 2004 J. Chem. Phys. 121 6052

    [65]

    Nakanishi H, Satoh M, Norisuye T, Tran C Q 2004 Macromolecules 37 8495

    [66]

    Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836

    [67]

    Puri S, Oono Y 1988 Phys. Rev. A 38 1542

    [68]

    Oono Y, Puri S 1988 Phys. Rev. A 38 434

    [69]

    Travasso R D M, Buxton G A, Kuksenok O, Good K, Balazs A C 2005 J. Chem. Phys. 122 194906 ten Brinke G, Ikkala O 1998 Science 280 557

  • [1] Zhang Yin-Sheng, Tong Jun-Yi, Chen Ge, Shan Meng-Jiao, Wang Shuo-Yang, Shan Hui-Lin. Synthetic aperture optical image restoration based on multi-scale feature enhancement. Acta Physica Sinica, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao. Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica, 2012, 61(22): 220507. doi: 10.7498/aps.61.220507
    [3] He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong. First-principles study of ordered structures in Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [4] Lu Huai-Bao, Li Jun-Wan, Ni Yu-Shan, Mei Ji-Fa, Wang Hong-Sheng. Multiscale analysis of defect initiation on the atomistic crack tip in body-centered-cubic metal Ta. Acta Physica Sinica, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [5] Cao Gong-Xun, Zhang Xiao-Qing, Sun Zhuan-Lan, Wang Xue-Wen, Lou Ke-Xing, Xia Zhong-Fu. Thermal stability and charge dynamics of piezoelectrets with tailored micro-structure. Acta Physica Sinica, 2010, 59(9): 6514-6520. doi: 10.7498/aps.59.6514
    [6] Sun Zhuan-Lan, Zhang Xiao-Qing, Cao Gong-Xun, Wang Xue-Wen, Xia Zhong-Fu. Preparation and piezoelectricity of fluorocarbon polymer piezoelectret films with ordered void structure. Acta Physica Sinica, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [7] Xing Zhen-Ci, Xu Wei, Rong Hai-Wu, Wang Bao-Yan. Response to bounded noise excitation of stochastic Mathieu-Duffing system with time delay state feedback. Acta Physica Sinica, 2009, 58(2): 824-829. doi: 10.7498/aps.58.824
    [8] Gong Zhi-Qiang, Zhou Lei, Zhi Rong, Feng Guo-Lin. Analysis of dynamical statistical characteristics of temperature correlation networks of 1—30d scales. Acta Physica Sinica, 2008, 57(8): 5351-5360. doi: 10.7498/aps.57.5351
    [9] Yang Xiao-Dong, Ning Xin-Bao, He Ai-Jun, Du Si_Dan. Mass exponent spectrum analysis of human ECG signals based on multiple scale factors. Acta Physica Sinica, 2008, 57(3): 1514-1521. doi: 10.7498/aps.57.1514
    [10] Lei You-Ming, Xu Wei. Homoclinic chaos in averaged oscillator subjected to combined deterministic and narrow-band random excitations. Acta Physica Sinica, 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [11] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [12] Zhang Yong-Ju, Yu Sen-Jiang, Ge Hong-Liang, Wu Liang-Neng, Cui Yu-Jian. Growth mechanism and ordered structures of iron films sputter-deposited on silicone oil surfaces. Acta Physica Sinica, 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [13] Zhang Yong-Ju, Yu Sen-Jiang. Self-organization of ordered surface patterns in nearly free sustained Al films. Acta Physica Sinica, 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [14] Xia A-Gen, Yang Bo, Jin Jin-Sheng, Zhang Yi-Wen, Tang Fan, Ye Gao-Xiang. Ordered structures and self-organized phenomena in Au films deposited on silicone oil surfaces. Acta Physica Sinica, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [15] Hu Yin-Qiao. Ordered structure and system development of the force dissipation system(Ⅱ),Minimal value principle of generalized energy and system development. Acta Physica Sinica, 2003, 52(6): 1354-1359. doi: 10.7498/aps.52.1354
    [16] Hu Yin-Qiao. Ordered structure and system development of the force dissipation system(Ⅰ),Principle of minimum entropy production and ordered structure. Acta Physica Sinica, 2003, 52(6): 1379-1384. doi: 10.7498/aps.52.1379
    [17] Jiang Ze-Hui, Lu Kun-Quan, Hou Mei-Ying, Chen Wei, Che n Xiang-Jun. Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [18] MA JIAN-WEI, YANG HUI-ZHU, ZHU YA-PING. SIMULATION OF ACOUSTIC WAVE PROPAGATION IN COMPLEX MEDIA USING MRFD METHOD. Acta Physica Sinica, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [19] SONG QING-GONG, CONG XUAN-ZHONG, ZHANG QING-JUN, MO WEN-LING, DAI ZHAN-HAI. ORDERED STRUCTURES OF HEXAGONAL HONEYCOMB LATTICE. Acta Physica Sinica, 2000, 49(10): 2011-2016. doi: 10.7498/aps.49.2011
    [20] SONG QING-GONG, DAI ZHAN-HAI, CONG XUAN-ZHONG, WEI HUAN, ZHANG QING-JUN. ORDERED STRUCTURES OF BINARY ALLOY WITH HEXAGONAL CLOSE-PACKED LATTICE. Acta Physica Sinica, 2000, 49(11): 2201-2209. doi: 10.7498/aps.49.2201
Metrics
  • Abstract views:  4561
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2015
  • Accepted Date:  21 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回