Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film

Wang Ya-Qin Yao Gang Huang Zi-Jian Huang Ying

Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film

Wang Ya-Qin, Yao Gang, Huang Zi-Jian, Huang Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vanadium dioxide (VO2) film with nanoparticles is fabricated by reactive ion beam deposition (RIBD) technology and post-annealing method on a quartz glass substrate. RIBD can enhance the damage threshold of VO2 film and reduce its scattering at insulator-state. And post-annealing can eliminate the structure defects and residual stress. VO2 film exhibits first-order and reversible metal-to-insulator (MIT) phase transition at a temperature of 68 ℃. It also exhibits photo-induced MIT, in which process a metal-like phase of monoclinic VO2 appears. With many surprising features in heat-induced and photo-induced MIT processes, VO2 film turn to satisfy all the characteristics needed for a laser protection system. The thickness of VO2 film used in these experiments and simulations is about 100 nm. The double-frequency He-Ne laser at a wavelength of 3 m is used to perform the experiment of heat-induced MIT, with a temperature controlling system. The exact optimal annealing temperature is demonstrated to be 465 ℃, as the sample annealing at this temperature shows the sharpest transition properties and unmixed VO2 phase peaks in X-ray diffraction pattern. Drude and Drude-Lorentz dispersion models are taken to analyze the dielectric constant of VO2. Then, the complex refractive index is calculated for simulation. Simulations with the TFCale software show that the transmissions at high temperature and low temperature have high contrasts in the infrared range. MIT experiments at multi-wavelength, which cover heat-induced and photo-induced MIT phase transition, are performed to investigate the applicability of VO2 film in multi-wavelength laser protection for both continuous wave and pulsed lasers Thus the excellent performance of VO2 film for laser protection is roundly verified. The laser protection experiments on silicon photocell exhibit that the VO2 film enhances the anti-jamming capability of photocell system by about 2.6 times, demonstrating the applicability of VO2 film to laser protection system. The power density of MIT transition threshold of VO2 film with a thickness of 100 nm is 4.35 W/cm2 at room temperature, which is investigated with a continuous wave laser at a wavelength of 1.08 m with a continuous tunable system. In addition, atomic force microscope is used to observe the film surfaces, which are irradiated by lasers with different power densities for different times The experimental results demonstrate that the power density damage threshold of VO2 film becomes very high (404 W/cm2). The low MIT transition threshold and high damage threshold of VO2 film further demonstrate its applicability as a key role for a laser protection system. With the high switching efficiency ratio and high damage threshold, VO2 thin film can be used in optical switch, smart windows and photoelectric device.
      Corresponding author: Huang Ying, hying@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61474051).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jin Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese) [熊瑛, 文歧业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [3]

    Mai L Q, Hu B, Hu T, Chen W, Gu E D 2006 J. Phys. Chem. B 110 19083

    [4]

    Liang J R, Wu M J, Hu M, Liu J, Zhu N W, Xia X X, Chen H D 2014 Chin. Phys. B 23 076801

    [5]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [6]

    Chen C, Yi X, Zhao X, Xiong B 2001 Sens. Act. A: Phys. 90 212

    [7]

    de Almeida L A L, Deep G S, Lima A M N, Neff H 2002 Opt. Eng. 41 2582

    [8]

    Verleur H, Barker A, Berglund C 1968 Phys. Rev. 172 788

    [9]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. and Sol. Cells 83 29

    [10]

    Wang H C, Yi X J, Li Y 2005 Opt. Commun. 256 305

    [11]

    Zhao Y, Xu R, Zhang X R, Hu X, Knize R J, Lu Y L 2013 Energy Build. 66 545

    [12]

    Huang Z, Chen S, L C, Huang Y, Lai J 2012 Appl. Phys. Lett. 101 191905

    [13]

    Ben-Messaoud T, Landry G, Gariepy J P, Ramamoorthy B, Ashrit P V, Hache A 2008 Opt. Commun. 281 6024

    [14]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1994 Appl. Phys. Lett. 65 1507

    [15]

    Rini M, Cavalleri A, Schoenlein R W, Lopez R, Feldman L C, Haglund R F, Boatner L A, Haynes T E 2005 Opt. Lett. 30 558

    [16]

    Xue X, Jiang M, Li G F, Lin X, Ma G H, Jin P 2013 J. Appl. Phys. 114 193506

    [17]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [18]

    Bai T, Li C Q, Sun J, Song Y, Wang J, Blau W J, Zhang B, Chen Y 2015 Chem.-Eur. J. 21 4622

    [19]

    Du Y Q 2010 Photonics and Optoelectronic (SOPO) Wuhan China, May 16-18, 2010 p1

    [20]

    Danilov O B, Zhevlakov A P, Sidorov A I, Tul'skii S A, Yachnev I L, Titterton D 2000 J. Opt. Technol. 67 526

    [21]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [22]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [23]

    Giannetti C 2004 Ph. D. Dissertation (Brescia: Universita Cattolica del Sacro Cuore)

    [24]

    Coath J A, Richardson M A 1999 Conference on Advances in Optical Interference Coatings, Berlin, Germany, May 25-27, 1999 p555

    [25]

    Kang L, Gao Y, Zhang Z, Du J, Cao C, Chen Z, Luo H 2010 J. Phys. Chem. C 114 1901

    [26]

    Zhou Y, Cai Y F, Hu X, Long Y 2015 J. Mater. Chem. A 3 1121

    [27]

    Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R 2014 Sci. Rept. 4 11

    [28]

    Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G 2011 Sol. Energy Mater. and Sol.Cells 95 2677

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jin Y L 2015 Acta Phys. Sin. 64 017102 (in Chinese) [熊瑛, 文歧业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰 2015 物理学报 64 017102]

    [3]

    Mai L Q, Hu B, Hu T, Chen W, Gu E D 2006 J. Phys. Chem. B 110 19083

    [4]

    Liang J R, Wu M J, Hu M, Liu J, Zhu N W, Xia X X, Chen H D 2014 Chin. Phys. B 23 076801

    [5]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [6]

    Chen C, Yi X, Zhao X, Xiong B 2001 Sens. Act. A: Phys. 90 212

    [7]

    de Almeida L A L, Deep G S, Lima A M N, Neff H 2002 Opt. Eng. 41 2582

    [8]

    Verleur H, Barker A, Berglund C 1968 Phys. Rev. 172 788

    [9]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. and Sol. Cells 83 29

    [10]

    Wang H C, Yi X J, Li Y 2005 Opt. Commun. 256 305

    [11]

    Zhao Y, Xu R, Zhang X R, Hu X, Knize R J, Lu Y L 2013 Energy Build. 66 545

    [12]

    Huang Z, Chen S, L C, Huang Y, Lai J 2012 Appl. Phys. Lett. 101 191905

    [13]

    Ben-Messaoud T, Landry G, Gariepy J P, Ramamoorthy B, Ashrit P V, Hache A 2008 Opt. Commun. 281 6024

    [14]

    Becker M F, Buckman A B, Walser R M, Lépine T, Georges P, Brun A 1994 Appl. Phys. Lett. 65 1507

    [15]

    Rini M, Cavalleri A, Schoenlein R W, Lopez R, Feldman L C, Haglund R F, Boatner L A, Haynes T E 2005 Opt. Lett. 30 558

    [16]

    Xue X, Jiang M, Li G F, Lin X, Ma G H, Jin P 2013 J. Appl. Phys. 114 193506

    [17]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhacs A, Chaker M, Siwick B J 2014 Science 346 445

    [18]

    Bai T, Li C Q, Sun J, Song Y, Wang J, Blau W J, Zhang B, Chen Y 2015 Chem.-Eur. J. 21 4622

    [19]

    Du Y Q 2010 Photonics and Optoelectronic (SOPO) Wuhan China, May 16-18, 2010 p1

    [20]

    Danilov O B, Zhevlakov A P, Sidorov A I, Tul'skii S A, Yachnev I L, Titterton D 2000 J. Opt. Technol. 67 526

    [21]

    Cavalleri A, Dekorsy T, Chong H H W, Kieffer J C, Schoenlein R W 2004 Phys. Rev. B 70 161102

    [22]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [23]

    Giannetti C 2004 Ph. D. Dissertation (Brescia: Universita Cattolica del Sacro Cuore)

    [24]

    Coath J A, Richardson M A 1999 Conference on Advances in Optical Interference Coatings, Berlin, Germany, May 25-27, 1999 p555

    [25]

    Kang L, Gao Y, Zhang Z, Du J, Cao C, Chen Z, Luo H 2010 J. Phys. Chem. C 114 1901

    [26]

    Zhou Y, Cai Y F, Hu X, Long Y 2015 J. Mater. Chem. A 3 1121

    [27]

    Zhao L L, Miao L, Liu C Y, Li C, Asaka T, Kang Y P, Iwamoto Y, Tanemura S, Gu H, Su H R 2014 Sci. Rept. 4 11

    [28]

    Chen Z, Gao Y, Kang L, Du J, Zhang Z, Luo H, Miao H, Tan G 2011 Sol. Energy Mater. and Sol.Cells 95 2677

  • [1] Song Ting-Ting, He Jie, Lin Li-Bin, Chen Jun. The theoretical study of metal-insulator transition of VO2. Acta Physica Sinica, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [2] Yang Shuai, Li Yang-Xian, Ma Qiao-Yun, Xu Xue-Wen, Niu Ping-Juan, Li Yong-Zhang, Niu Sheng-Li, Li Hong-Tao. FTIR study an VO2 defect in fast neutron irradiated Czochralski silicon. Acta Physica Sinica, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [3] Li Yi, Zhu Hui-Qun, Zhou Sheng, Huang Yi-Ze, Tong Guo-Xiang, Sun Ruo-Xi, Zhang Yu-Ming, Zheng Qiu-Xin, Li Liu, Shen Yu-Jian, Fang Bao-Ying. Study on thermochromic properties of VO2/ZnO nanocrystalline composite films. Acta Physica Sinica, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [4] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [5] Yuan Wen-Rui, Li Yi, Wang Xiao-Hua, Zheng Hong-Zhu, Chen Shao-Juan, Chen Jian-Kun, Sun Yao, Tang Jia-Yin, Liu Fei, Hao Ru-Long, Fang Bao-Ying, Xiao Han. Fabrication and optical-electrical properties of VO2/AZO composite films. Acta Physica Sinica, 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [6] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [7] Zhu Hui-Qun, Li Yi, Ye Wei-Jie, Li Chun-Bo. Thermochromic properties of W-doped VO2/ZnO nanocomposite films with flower structures. Acta Physica Sinica, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [8] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [9] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [10] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [11] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [12] Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature. Acta Physica Sinica, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [13] Chen He-Sheng. Phase transition of lattice quantum chromodynamics with 2+1 flavor fermions at finite temperature and finite density. Acta Physica Sinica, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [14] Sun Jing-Yang, Wang Dong-Ming, Lü Ye-Gang, Wang Miao, Wang Yi-Man, Shen Xiang, Wang Guo-Xiang, Dai Shi-Xun. Structure and phase change in Cu-Ge3Sb2Te5 films for use in phase change random access memory. Acta Physica Sinica, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [15] Yuan Huan-Li, Yuan Bao-He, Li Fang, Liang Er-Jun. Phase transition and thermal expansion properties of ZrV2-xPxO7. Acta Physica Sinica, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [16] Jia Shu-Fang, Liang Jiu-Qing. Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition. Acta Physica Sinica, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [17] Wang Pan-Pan, Zhang Yu-Zhi, Peng Ming-Dong, Zhang Yun-Long, Wu Ling-Nan, Cao Yun-Zhen, Song Li-Xin. Spectroscopic ellipsometry analysis of vanadium oxide film in Vis-NIR and NIR-MIR. Acta Physica Sinica, 2016, 65(12): 127201. doi: 10.7498/aps.65.127201
    [18] WANG WEN-HU, XIONG YU-FENG, LI SHI-LIANG, CHEN ZHAO-JIA, WEN HAI-HU. ANOMALOUS MAGNETIZATION PEAK EFFECT IN Bi2Sr2CaCu2O8 SINGLE CRYSTALS. Acta Physica Sinica, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [19] Zhou Da-Yu, Xu Jin. Ferroelectric and antiferroelectric properties of Si-doped HfO2 thin films. Acta Physica Sinica, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [20] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
  • Citation:
Metrics
  • Abstract views:  953
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2015
  • Accepted Date:  15 December 2015
  • Published Online:  05 March 2016

Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film

    Corresponding author: Huang Ying, hying@hust.edu.cn
  • 1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61474051).

Abstract: Vanadium dioxide (VO2) film with nanoparticles is fabricated by reactive ion beam deposition (RIBD) technology and post-annealing method on a quartz glass substrate. RIBD can enhance the damage threshold of VO2 film and reduce its scattering at insulator-state. And post-annealing can eliminate the structure defects and residual stress. VO2 film exhibits first-order and reversible metal-to-insulator (MIT) phase transition at a temperature of 68 ℃. It also exhibits photo-induced MIT, in which process a metal-like phase of monoclinic VO2 appears. With many surprising features in heat-induced and photo-induced MIT processes, VO2 film turn to satisfy all the characteristics needed for a laser protection system. The thickness of VO2 film used in these experiments and simulations is about 100 nm. The double-frequency He-Ne laser at a wavelength of 3 m is used to perform the experiment of heat-induced MIT, with a temperature controlling system. The exact optimal annealing temperature is demonstrated to be 465 ℃, as the sample annealing at this temperature shows the sharpest transition properties and unmixed VO2 phase peaks in X-ray diffraction pattern. Drude and Drude-Lorentz dispersion models are taken to analyze the dielectric constant of VO2. Then, the complex refractive index is calculated for simulation. Simulations with the TFCale software show that the transmissions at high temperature and low temperature have high contrasts in the infrared range. MIT experiments at multi-wavelength, which cover heat-induced and photo-induced MIT phase transition, are performed to investigate the applicability of VO2 film in multi-wavelength laser protection for both continuous wave and pulsed lasers Thus the excellent performance of VO2 film for laser protection is roundly verified. The laser protection experiments on silicon photocell exhibit that the VO2 film enhances the anti-jamming capability of photocell system by about 2.6 times, demonstrating the applicability of VO2 film to laser protection system. The power density of MIT transition threshold of VO2 film with a thickness of 100 nm is 4.35 W/cm2 at room temperature, which is investigated with a continuous wave laser at a wavelength of 1.08 m with a continuous tunable system. In addition, atomic force microscope is used to observe the film surfaces, which are irradiated by lasers with different power densities for different times The experimental results demonstrate that the power density damage threshold of VO2 film becomes very high (404 W/cm2). The low MIT transition threshold and high damage threshold of VO2 film further demonstrate its applicability as a key role for a laser protection system. With the high switching efficiency ratio and high damage threshold, VO2 thin film can be used in optical switch, smart windows and photoelectric device.

Reference (28)

Catalog

    /

    返回文章
    返回