Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Static subminiature snapshot imaging polarimeter using spatial modulation

Cao Qi-Zhi Zhang Jing Edward DeHoog Lu Yuang Hu Bao-Qing Li Wu-Gang Li Jian-Ying Fan Dong-Xin Deng Ting Yan Yan

Static subminiature snapshot imaging polarimeter using spatial modulation

Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The spatially modulated snapshot imaging polarimeter can acquire the image and two-dimensional state of polarization using the spatial carrier fringe to encode the full Stokes vectors in a single interference image. It can be used in space exploration, earth observation and detection of biological medicine, land surface and oceans. In an earlier publication, we demonstrated by theoretical analysis that the spatially modulated snapshot imaging polarimeter using modified Savart polariscopes (MSPSIP) is comparable in carrier frequency, signal-to-noise ratio, and spatial resolution to a spatially modulated snapshot imaging polarimeter using conventional Savart polariscopes. In this investigation, the numerical simulation is used to demonstrate theoretical analysis and the feasibility of MSPSIP. Moreover, a geometric ray model is developed to explain the principle and scheme of MSPSIP and derive the expressions of interference intensities. Moreover, a laboratory experiment is conducted to demonstrate the validity of MSPSIP. In addition, we analyze that the interference intensity varies with the direction of polarization analyzer. This investigation enriches the study on MSPSIP and provides a theoretical and practical guidance for study, design, modulation, experiment and engineering of MSPSIP. Furthermore, the MSPSIP operates based on the principle of encodeding polarization information within the spatial modulation of the image. This unique technology allows all Stokes parameters to be simultaneously recorded from each spatial position in an image with a single integration period of the imaging system. The device contains no moving parts and requires no scanning, allowing it to acquire data without the motion artifacts normally associated with scanning polarimeter. In addition to having snapshot imaging and static (no moving parts) capabilities, image processing is simple, and the device is compact, and miniature. Therefore, we believe that MSPSIP will be useful in many applications, such as remote sensing and bioscience.
      Corresponding author: Zhang Jing, zj_happiness@163.com
    • Funds: Project supported by Opening fund of Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Guangxi Teachers Education University), China (Grant No. 2014BGERLXT10), the Ph. D. Initial Fund of the Guangxi Teachers Education University, China, the Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, China (Grant No. DGN201501), the Key Program of the National Natural Science Foundation of China (Grant No. 61275184), and the National High Technology Research and Development Program of China (Grant No. 2012AA120211).
    [1]

    nik F, Craven-Jones J, Escuti M, Fineschi S, Harrington D, de Martino, A, Dimitri M, Jerome R, Tyo J S 2014 SPIE Sensing Technology and Applications International Society for Optics and Photonics Maryland, USA, May 5-9, 2014 p90990B

    [2]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 061104

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Goldstein D H 2010 Polarized Light(Florida: CRC Press)

    [5]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜鹃 2008 物理学报 57 7565]

    [6]

    Li S J, Jiang H J, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [7]

    Song K S 2002 M. S. Dissertation (Changchun: Northeast Normal University) [宋开山 2002硕士论文(长春: 东北师范大学)]

    [8]

    Huang R 2004 M. S. Dissertation (Changchun: Northeast Normal University) [黄睿2004硕士论文(长春: 东北师范大学)]

    [9]

    Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄芳, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]

    [10]

    He H H, Zeng N, Liao R, Ma H 2015 Progress in Biochemistry and Biophysics 42 419 (in Chinese) [何宏辉, 曾楠, 廖然, 马辉2015 生物化学与生物物理进展 42 419]

    [11]

    Li S, Qiu Z W, Yang C J 2010 J. Atmosph. Environ. Opt. 5 198 (in Chinese) [李双, 裘桢炜, 杨长久 2010 大气与环境光学学报 5 198]

    [12]

    Liu J, Xia R Q, Jin W Q, Wang X, Du L 2013 Opt. Tech. 39 56 (in Chinese) [刘敬, 夏润秋, 金伟其, 王霞, 杜岚2013光学技术 39 56]

    [13]

    Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 117 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞2015光学学报 35 117]

    [14]

    Wang Y, Xue M G, Huang Q C 2009 Comput. Engineer. 35 271 (in Chinese) [王勇, 薛模根, 黄勤超 2009 计算机工程 35 271]

    [15]

    Cheng M X, He Z J, Huang Z H 2008 Opto-Electron. Engineer. 35 93 (in Chinese) [程敏熙, 何振江, 黄佐华 2008 光电工程 35 93]

    [16]

    Schott J R 2009 Fundamentals of Polarimetric Remote Sensing (WA: Spie Press)

    [17]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press)

    [18]

    Oka K, Kaneko T 2003 Opt. Express 11 1510

    [19]

    Luo H T 2008 Ph. D. Dissertation (Arizona: University of Arizona)

    [20]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) [曹奇志 2014博士学位论文(西安: 西安交通大学)]

    [21]

    Cao Q Z, Zhang C, DeHoog E 2012 Appl. Opt. 51 5791

    [22]

    Luo H T, Oka K, Dehoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

    [23]

    Oka K, Saito N 2006 SPIE Optics and Photonics International Society for Optics and Photonics California, USA, August 13, 2006p629508

    [24]

    DeHoog E, Luo H, Oka K, Dereniak E L, Schiewgerling J 2009 Appl Opt. 48 1663

    [25]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [26]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese) [胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144 ]

    [27]

    Gong G Y, Sun X B, Yang W F, Liu Z 2015 Applied Optics and Photonics China (AOPC2015) International Society for Optics and Photonics Beijing, China, May 5-9, 2015 p 967529

    [28]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik-International Journal for Light and Electron Optics 125 3380

    [29]

    Liang Q 1990 Appl. Opt. 29 1008

    [30]

    Francon M, Mallick S 1971 Polarization Interferometers (New York: Wiley)

  • [1]

    nik F, Craven-Jones J, Escuti M, Fineschi S, Harrington D, de Martino, A, Dimitri M, Jerome R, Tyo J S 2014 SPIE Sensing Technology and Applications International Society for Optics and Photonics Maryland, USA, May 5-9, 2014 p90990B

    [2]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 061104

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Goldstein D H 2010 Polarized Light(Florida: CRC Press)

    [5]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜鹃 2008 物理学报 57 7565]

    [6]

    Li S J, Jiang H J, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [7]

    Song K S 2002 M. S. Dissertation (Changchun: Northeast Normal University) [宋开山 2002硕士论文(长春: 东北师范大学)]

    [8]

    Huang R 2004 M. S. Dissertation (Changchun: Northeast Normal University) [黄睿2004硕士论文(长春: 东北师范大学)]

    [9]

    Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄芳, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]

    [10]

    He H H, Zeng N, Liao R, Ma H 2015 Progress in Biochemistry and Biophysics 42 419 (in Chinese) [何宏辉, 曾楠, 廖然, 马辉2015 生物化学与生物物理进展 42 419]

    [11]

    Li S, Qiu Z W, Yang C J 2010 J. Atmosph. Environ. Opt. 5 198 (in Chinese) [李双, 裘桢炜, 杨长久 2010 大气与环境光学学报 5 198]

    [12]

    Liu J, Xia R Q, Jin W Q, Wang X, Du L 2013 Opt. Tech. 39 56 (in Chinese) [刘敬, 夏润秋, 金伟其, 王霞, 杜岚2013光学技术 39 56]

    [13]

    Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 117 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞2015光学学报 35 117]

    [14]

    Wang Y, Xue M G, Huang Q C 2009 Comput. Engineer. 35 271 (in Chinese) [王勇, 薛模根, 黄勤超 2009 计算机工程 35 271]

    [15]

    Cheng M X, He Z J, Huang Z H 2008 Opto-Electron. Engineer. 35 93 (in Chinese) [程敏熙, 何振江, 黄佐华 2008 光电工程 35 93]

    [16]

    Schott J R 2009 Fundamentals of Polarimetric Remote Sensing (WA: Spie Press)

    [17]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press)

    [18]

    Oka K, Kaneko T 2003 Opt. Express 11 1510

    [19]

    Luo H T 2008 Ph. D. Dissertation (Arizona: University of Arizona)

    [20]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) [曹奇志 2014博士学位论文(西安: 西安交通大学)]

    [21]

    Cao Q Z, Zhang C, DeHoog E 2012 Appl. Opt. 51 5791

    [22]

    Luo H T, Oka K, Dehoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

    [23]

    Oka K, Saito N 2006 SPIE Optics and Photonics International Society for Optics and Photonics California, USA, August 13, 2006p629508

    [24]

    DeHoog E, Luo H, Oka K, Dereniak E L, Schiewgerling J 2009 Appl Opt. 48 1663

    [25]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [26]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese) [胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144 ]

    [27]

    Gong G Y, Sun X B, Yang W F, Liu Z 2015 Applied Optics and Photonics China (AOPC2015) International Society for Optics and Photonics Beijing, China, May 5-9, 2015 p 967529

    [28]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik-International Journal for Light and Electron Optics 125 3380

    [29]

    Liang Q 1990 Appl. Opt. 29 1008

    [30]

    Francon M, Mallick S 1971 Polarization Interferometers (New York: Wiley)

  • [1] Zhang Jing, Ren Wen-Yi, Cao Qi-Zhi, Li Jian-Ying, Deng Ting, Jin Ming-Wu. A method of reducing false signature in spatially-modulated snapshot imaging polarimeter. Acta Physica Sinica, 2018, 67(4): 040701. doi: 10.7498/aps.67.20171931
    [2] Zhang Jun, Liang Zhong-Zhu, Liang Jing-Qiu, Zhu Wan-Bin, Wang Wei-Biao, Pei Shu, Wang Bo, Kong Yan-Mei, Fu Jian-Guo, Zheng Ying, Lü Jin-Guang. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [3] Ban Zhang, Liang Jing-Qiu, Lü Jin-Guang, Liang Zhong-Zhu, Feng Si-Yue. Study on uniform irradiance of micro curved-light-emitting diode array. Acta Physica Sinica, 2018, 67(7): 070701. doi: 10.7498/aps.67.20172596
    [4] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [5] Jian Xiao-Hua, Zhang Chun-Min, Zhao Bao-Chang. A new method for spectrum reproduction and interferogram processing. Acta Physica Sinica, 2007, 56(2): 824-829. doi: 10.7498/aps.56.824
    [6] Cao Qi-Zhi, Yuan Chang-An, Hu Bao-Qing, Ren Wen-Yi, Zhao Yin-Jun, Zhang Jing, Li Jian-Ying, Deng Ting, Mingwu Jin. Principle analysis of snapshot Mueller matrix imaging polarimeter using birefringent crystal. Acta Physica Sinica, 2018, 67(10): 104209. doi: 10.7498/aps.67.20172604
    [7] Mou Huan, Li Bao-Quan, Cao Yang. Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [8] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [9] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [10] Xu Nian-Xi, Feng Xiao-Guo, Wang Yan-Song, Chen Xin, Gao Jin-Song. Design and study of miniaturized-element frequency selective surfaces. Acta Physica Sinica, 2011, 60(11): 114102. doi: 10.7498/aps.60.114102
    [11] Li Jian-Fen, Li Nong, Lin Hui. Secure communication method for fast-varying information signal based on chaotic modulation. Acta Physica Sinica, 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [12] Wang Chen, An Hong-Hai, Fang Zhi-Heng, Xiong Jun, Wang Wei, Sun Jin-Ren. Spatial resolution study of soft X-ray laser backlight shadow imaging technique. Acta Physica Sinica, 2018, 67(1): 015203. doi: 10.7498/aps.67.20171124
    [13] Liu Chao, Zhang Dong-Xian, Zhang Hai-Jun. Theoretical modeling of microscopic photothermal expansion and experimental study of photothermal microactuators. Acta Physica Sinica, 2009, 58(4): 2619-2624. doi: 10.7498/aps.58.2619
    [14] Qiao Da-Yong, Chen Xue-Jiao, Ren Yong, Zang Bo, Yuan Wei-Zheng. A nuclear micro-battery based on silicon PIN diode. Acta Physica Sinica, 2011, 60(2): 020701. doi: 10.7498/aps.60.020701
    [15] Wu Hong-Peng, Dong Lei, Zheng Hua-Dan, Liu Yan-Yan, Ma Wei-Guang, Zhang Lei, Wang Wu-Yi, Zhu Qing-Ke, Yin Wang-Bao, Jia Suo-Tang. Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes. Acta Physica Sinica, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [16] Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu. Study of mini-themionic electron sources for vacuum electron THz devices. Acta Physica Sinica, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [17] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [18] Wang Hong-Liang, Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu, Wang Wei-Biao. Design and analysis of medium wave infrared miniature static Fourier transform spectrometer. Acta Physica Sinica, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [19] Huang De-Xiu, Zhang Xin-Liang, Li Pei-Li. Ultrahigh-speed all-optical encoder based on four-wave mixing in semiconductor optical amplifiers with PolSK modulated signals. Acta Physica Sinica, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [20] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
  • Citation:
Metrics
  • Abstract views:  947
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2015
  • Accepted Date:  15 December 2015
  • Published Online:  05 March 2016

Static subminiature snapshot imaging polarimeter using spatial modulation

    Corresponding author: Zhang Jing, zj_happiness@163.com
  • 1. College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530023, China;
  • 2. Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Guangxi Teachers Education University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Guangxi Teachers Education University, Nanning 530001, China;
  • 3. Institute of Space optics, Xi'an Jiaotong University, Xi'an 710049, China;
  • 4. Optical Engineering and Analysis LLC, 1030 Loma Ave, Long Beach, California 90501, USA
Fund Project:  Project supported by Opening fund of Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Guangxi Teachers Education University), China (Grant No. 2014BGERLXT10), the Ph. D. Initial Fund of the Guangxi Teachers Education University, China, the Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, China (Grant No. DGN201501), the Key Program of the National Natural Science Foundation of China (Grant No. 61275184), and the National High Technology Research and Development Program of China (Grant No. 2012AA120211).

Abstract: The spatially modulated snapshot imaging polarimeter can acquire the image and two-dimensional state of polarization using the spatial carrier fringe to encode the full Stokes vectors in a single interference image. It can be used in space exploration, earth observation and detection of biological medicine, land surface and oceans. In an earlier publication, we demonstrated by theoretical analysis that the spatially modulated snapshot imaging polarimeter using modified Savart polariscopes (MSPSIP) is comparable in carrier frequency, signal-to-noise ratio, and spatial resolution to a spatially modulated snapshot imaging polarimeter using conventional Savart polariscopes. In this investigation, the numerical simulation is used to demonstrate theoretical analysis and the feasibility of MSPSIP. Moreover, a geometric ray model is developed to explain the principle and scheme of MSPSIP and derive the expressions of interference intensities. Moreover, a laboratory experiment is conducted to demonstrate the validity of MSPSIP. In addition, we analyze that the interference intensity varies with the direction of polarization analyzer. This investigation enriches the study on MSPSIP and provides a theoretical and practical guidance for study, design, modulation, experiment and engineering of MSPSIP. Furthermore, the MSPSIP operates based on the principle of encodeding polarization information within the spatial modulation of the image. This unique technology allows all Stokes parameters to be simultaneously recorded from each spatial position in an image with a single integration period of the imaging system. The device contains no moving parts and requires no scanning, allowing it to acquire data without the motion artifacts normally associated with scanning polarimeter. In addition to having snapshot imaging and static (no moving parts) capabilities, image processing is simple, and the device is compact, and miniature. Therefore, we believe that MSPSIP will be useful in many applications, such as remote sensing and bioscience.

Reference (30)

Catalog

    /

    返回文章
    返回