Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and verification of an electronically controllable ultrathin coding periodic element in Ku band

Yang Huan-Huan Yang Fan Xu Shen-Heng Li Mao-Kun Cao Xiang-Yu Gao Jun

Design and verification of an electronically controllable ultrathin coding periodic element in Ku band

Yang Huan-Huan, Yang Fan, Xu Shen-Heng, Li Mao-Kun, Cao Xiang-Yu, Gao Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The coding periodic element is able to achieve coded reconfigurable electromagnetic (EM) responses by loading controllable electronic devices. In this work, an electronically controllable ultrathin planar periodic element structure in Ku band is implemented with one PIN diode. When the PIN diode turns ON or OFF by applying a proper biasing voltage, the resonant property of the element changes correspondingly, and hence a 180° phase difference between the two states is obtained. By optimizing the geometrical parameters, the reflection loss less than 0.5 dB is achieved by the proposed element. Therefore, using a proper biasing voltage control network, the PIN diodes of the proposed elements in a periodic arrangement are set at different states, which may be denoted by a binary string with "1"s or "0"s, and the whole array of elements operates as a binary coding periodic structure and exhibits controllable EM functionalities. In order to verify the coding property of the proposed element, the general principle for the biasing circuit design is given. An optimized biasing circuit is thoroughly studied using both field distribution analysis and equivalent circuit theory. Simulated results show that the specially designed biasing hardly affects the element reflection performance. Finally, a group of element prototypes are fabricated with welded PIN diodes and measured using the standard waveguide test method. The difference in mirror image between the waveguide test and the desired periodic arrangement is also discussed. The experimental results validate that the proposed element successfully achieves good coding EM performance by controlling its biasing voltage. The reflection loss of the element is very low, and well distributed phase difference between the two element states is observed. The simulation and experiment results agree well, and the deviation between them is analyzed in detail. The proposed element possesses distinctive favorable features such as coded controllable EM functionalities, simple structure and ultrathin profile, thus exhibiting the promising prospects in tunable stealth surface, agile antennas, and many other applications.
      Corresponding author: Yang Huan-Huan, jianye8901@126.com
    • Funds: Project supported by theTsinghua National Laboratory for Information Science and Technology(TNList), China and the National Natural Science Foundation of China (Grant Nos. 61271100, 61371013, 61471389).
    [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • [1] Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng. Free-space optical communication based on hybrid optical mode array encoding. Acta Physica Sinica, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [2] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [3] Gan Tian, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Image fusion algorithm based on block-DCT in wavelet domain. Acta Physica Sinica, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [4] Lu Si-Long, Wu Xian-Liang, Ren Xin-Gang, Mei Yi-Cai, Shen Jing, Huang Zhi-Xiang. Study of periodic dispersive structures using splitfield FDTD method. Acta Physica Sinica, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [5] Liu Hua-Song, Liu Dan-Dan, Jiang Cheng-Hui, Wang Li-Shuan, Jiang Yu-Gang, Sun Peng, Ji Yi-Qin. Properties of reflecting region of periodic-structured thin film with refractive index dispersion. Acta Physica Sinica, 2014, 63(1): 017801. doi: 10.7498/aps.63.017801
    [6] Jiang Jiu-Long, Yao Hong, Du Jun, Zhao Jing-Bo, Deng Tao. Low frequency band gap characteristics of double-split Helmholtz locally resonant periodic structures. Acta Physica Sinica, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [7] Yin Jian-Fei, Wen Ji-Hong, Xiao Yong, Wen Xi-Sen. Study of vibration propagation in periodic rib-stiffened plates using advanced statistical energy analysis. Acta Physica Sinica, 2015, 64(13): 134301. doi: 10.7498/aps.64.134301
    [8] Wang Shuai, Wang Wei, Cao Xiang-Yu, Zheng Qiu-Rong, Wang Rui. Influence of dielectric substrates on surface wave bandgap of uniplanar electromagnetic band-gap structure. Acta Physica Sinica, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [9] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [10] Gao Ming, Wu Zhi-Qiang. Band gap design for one-dimensional periodic structure with three oscillators. Acta Physica Sinica, 2013, 62(14): 140507. doi: 10.7498/aps.62.140507
    [11] Xiao Wan-Neng, Zhao Ji, Wang Wei-Jiang, Li Run-Hua, Zhou Jian-Ying. Linear optical absorption properties and internal electromagnetic field distribu tions of periodic multiple quantum wells. Acta Physica Sinica, 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
    [12] Shao Hui-Guo, Zhao Ji, Wu Jia-Wen, Zhou Jian-Ying. Moving and zero-velocity gap soliton in resonantly absorbing Bragg reflector of finite atomic widths. Acta Physica Sinica, 2005, 54(3): 1420-1425. doi: 10.7498/aps.54.1420
    [13] Zheng Qiu-Rong, Fu Yun-Qi, Lin Bao-Qin, Yuan Nai-Chang. Impact of a cover layer to high impedance ground plane band-gap. Acta Physica Sinica, 2006, 55(9): 4698-4703. doi: 10.7498/aps.55.4698
    [14] Zhang Rong-Fu, Wang Tao, Pan Chao, Wang Liang-Liang, Zhuang Song-Lin. Extension characteristics of the depth of field for wavefront coding system. Acta Physica Sinica, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [15] Wang Xin-Yi, Fan Quan-Ping, Wei Lai, Yang Zu-Hua, Zhang Qiang-Qiang, Chen Yong, Peng Qian, Yan Zhuo-Yang, Xiao Sha-Li, Cao Lei-Feng. High-resolution reconstruction of Fresnel zone plate coded imaging. Acta Physica Sinica, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [16] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [17] Liao Dong, Wang Xiao-Min, Zhang Jia-Shu, Zhang Wen-Fang. The chaotic hash function based on spatial expansion construction with controllable parameters. Acta Physica Sinica, 2012, 61(23): 230506. doi: 10.7498/aps.61.230506
    [18] Xu Xue-Yan, Hou Shun-Yong, Yin Jian-Ping. Chip-based controllable Ioffe-typed electrostatic mirotrap for cold molecules. Acta Physica Sinica, 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [19] Tang Zhi-Lie, Li Ming, Wei Zheng-Jun, Lu Fei, Liao Chang-Jun, Liu Song-Hao. The quantum key distribution system based on polarization states produced by phase modulation. Acta Physica Sinica, 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
    [20] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
  • Citation:
Metrics
  • Abstract views:  896
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2015
  • Accepted Date:  15 November 2015
  • Published Online:  05 March 2016

Design and verification of an electronically controllable ultrathin coding periodic element in Ku band

    Corresponding author: Yang Huan-Huan, jianye8901@126.com
  • 1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
  • 2. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
Fund Project:  Project supported by theTsinghua National Laboratory for Information Science and Technology(TNList), China and the National Natural Science Foundation of China (Grant Nos. 61271100, 61371013, 61471389).

Abstract: The coding periodic element is able to achieve coded reconfigurable electromagnetic (EM) responses by loading controllable electronic devices. In this work, an electronically controllable ultrathin planar periodic element structure in Ku band is implemented with one PIN diode. When the PIN diode turns ON or OFF by applying a proper biasing voltage, the resonant property of the element changes correspondingly, and hence a 180° phase difference between the two states is obtained. By optimizing the geometrical parameters, the reflection loss less than 0.5 dB is achieved by the proposed element. Therefore, using a proper biasing voltage control network, the PIN diodes of the proposed elements in a periodic arrangement are set at different states, which may be denoted by a binary string with "1"s or "0"s, and the whole array of elements operates as a binary coding periodic structure and exhibits controllable EM functionalities. In order to verify the coding property of the proposed element, the general principle for the biasing circuit design is given. An optimized biasing circuit is thoroughly studied using both field distribution analysis and equivalent circuit theory. Simulated results show that the specially designed biasing hardly affects the element reflection performance. Finally, a group of element prototypes are fabricated with welded PIN diodes and measured using the standard waveguide test method. The difference in mirror image between the waveguide test and the desired periodic arrangement is also discussed. The experimental results validate that the proposed element successfully achieves good coding EM performance by controlling its biasing voltage. The reflection loss of the element is very low, and well distributed phase difference between the two element states is observed. The simulation and experiment results agree well, and the deviation between them is analyzed in detail. The proposed element possesses distinctive favorable features such as coded controllable EM functionalities, simple structure and ultrathin profile, thus exhibiting the promising prospects in tunable stealth surface, agile antennas, and many other applications.

Reference (23)

Catalog

    /

    返回文章
    返回